1. 引言
在现代应用中,个性化推荐系统已经广泛应用于 电商、社交媒体、在线教育 等多个领域。传统的推荐系统主要依赖于协同过滤、基于内容的推荐等方法,而AI 驱动的推荐系统可以结合深度学习和自然语言处理(NLP),提供更精准的个性化推荐。
本篇文章将介绍如何基于 Spring AI
构建一个 AI 驱动的个性化推荐系统,包括:
- 数据收集与存储
- 用户行为分析
- AI 模型推理
- 推荐结果的动态调整
2. 推荐系统架构设计
AI 驱动的个性化推荐系统通常包含以下几个核心模块:
- 数据收集:收集用户行为数据,如浏览、点击、购买等。
- 数据存储与处理:存储用户行为日志,并进行数据清洗。
- AI 推理引擎:
- 通过深度学习模型(如 OpenAI、Hugging Face、TensorFlow)进行推荐计算。
- 结合向量数据库(Chroma、Milvus)进行相似度匹配。
- 推荐策略:
- 结合实时和离线推荐,提高系统的推荐质量。
- 推荐 API:
- 通过 REST 或 gRPC 提供推荐结果。
系统架构
3. 核心模块实现
3.1 项目依赖
创建 Spring Boot
项目,并添加 Spring AI、向量数据库和数据存储 相关依赖。
<dependencies>
<!-- Spring Boot Web -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- Spring AI -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-ai-openai</artifactId>
</dependency>
<!-- Chroma 向量数据库 -->
<dependency>
<groupId>com.chroma</groupId>
<artifactId>chroma-client</artifactId>
<version>0.1.0</version>
</dependency>