矩阵及其运算

一、矩阵概念

m ∗ n m*n mn矩阵

A = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a m 1 a m 2 . . . a m n ] A=\left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{m1} & a_{m2} & ... & a_{mn} \end{matrix} \right] A=a11a21...am1a12a22...am2............a1na2n...amn
当m=n时,为n阶矩阵,亦称为n阶方阵。

行矩阵 1 ∗ n 1*n 1n的矩阵;

[ a 11 a 12 . . . a 1 n ] \left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ \end{matrix} \right] [a11a12...a1n]

列矩阵 m ∗ 1 m*1 m1的矩阵;

[ a 11 a 21 . . . a m 1 ] \left[ \begin{matrix} a_{11}\\ a_{21}\\ ... \\ a_{m1} \end{matrix} \right] a11a21...am1

零矩阵:元素都为0的矩阵,记作 O O O

对角矩阵:除对角线外的元素都为0的矩阵,记作 Λ \Lambda Λ

Λ = [ λ 1 0 . . . 0 0 λ 2 . . . 0 . . . . . . . . . . . . 0 0 . . . λ n ] \Lambda=\left[ \begin{matrix} \lambda_1 & 0 & ... & 0\\ 0 & \lambda_2 & ... & 0 \\ ... & ... & ... & ... \\ 0 & 0 & ... & \lambda_n \end{matrix} \right] Λ=λ10...00λ2...0............00...λn
记作: Λ = d i a g ( λ 1 , λ 2 , . . . , λ n ) \Lambda=diag(\lambda_1,\lambda_2,...,\lambda_n) Λ=diag(λ1,λ2,...,λn)

单位矩阵:对角线为1,其余元素都为0的矩阵;

E = [ 1 0 . . . 0 0 1 . . . 0 . . . . . . . . . . . . 0 0 . . . 1 ] E=\left[ \begin{matrix} 1 & 0 & ... & 0\\ 0 & 1 & ... & 0 \\ ... & ... & ... & ... \\ 0 & 0 & ... & 1 \end{matrix} \right] E=10...001...0............00...1

二、矩阵运算

已知 A = [ a 11 a 12 a 21 a 22 ] A=\left[\begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix}\right] A=[a11a21a12a22], B = [ b 11 b 12 b 21 b 22 ] B=\left[\begin{matrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{matrix}\right] B=[b11b21b12b22],常数 λ \lambda λ;

1、矩阵相加

A + B = [ a 11 + b 11 a 12 + b 12 a 21 + b 21 a 22 + b 22 ] A+B=\left[\begin{matrix} a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22} \end{matrix}\right] A+B=[a11+b11a21+b21a12+b12a22+b22]

2、数与矩阵相乘

λ A = [ λ a 11 λ a 12 λ a 21 λ a 22 ] \lambda A=\left[\begin{matrix} \lambda a_{11} & \lambda a_{12} \\ \lambda a_{21} & \lambda a_{22} \end{matrix}\right] λA=[λa11λa21λa12λa22]

3、矩阵相乘

A B = [ a 11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12 + a 22 b 22 ] AB=\left[\begin{matrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22} \\ a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12} +a_{22}b_{22} \end{matrix}\right] AB=[a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]

三、矩阵自身的运算

1、转置矩阵

A = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a m 1 a m 2 . . . a m n ] , A T = [ a 11 a 21 . . . a m 1 a 12 a 22 . . . a m 2 . . . . . . . . . . . . a 1 n a 2 n . . . a m n ] A=\left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{m1} & a_{m2} & ... & a_{mn} \end{matrix} \right],A^T=\left[ \begin{matrix} a_{11} & a_{21} & ... & a_{m1}\\ a_{12} & a_{22} & ... & a_{m2} \\ ... & ... & ... & ... \\ a_{1n} & a_{2n} & ... & a_{mn} \end{matrix} \right] A=a11a21...am1a12a22...am2............a1na2n...amnAT=a11a12...a1na21a22...a2n............am1am2...amn

转置矩阵的运算公式
( A T ) T = A (A^T)^T=A (AT)T=A
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

2、方阵的行列式

运算公式
∣ A T ∣ = ∣ A ∣ \left|A^T\right|=\left|A\right| AT=A
∣ λ A ∣ = λ n ∣ A ∣ \left|\lambda A\right|=\lambda^n \left|A\right| λA=λnA
∣ A B ∣ = ∣ A ∣ ∣ B ∣ \left|AB\right|= \left|A\right|\left|B\right| AB=AB

伴随矩阵:由各元素的代数余子式所组成的矩阵;

A ∗ = [ A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 2 . . . . . . . . . . . . A 1 n A 2 n . . . A n n ] A^*=\left[ \begin{matrix} A_{11} & A_{21} & ... & A_{n1}\\ A_{12} & A_{22} & ... & A_{n2} \\ ... & ... & ... & ... \\ A_{1n} & A_{2n} & ... & A_{nn} \end{matrix} \right] A=A11A12...A1nA21A22...A2n............An1An2...Ann

A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=\left|A\right|E AA=AA=AE

3、逆矩阵

A B = B A = E AB=BA=E AB=BA=E,则矩阵 B B B称为 A A A的逆矩阵, ∣ A ∣ ≠ 0 |A|≠0 A̸=0

A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

运算公式
如果 A = P Λ P − 1 A=P\Lambda P^{-1} A=PΛP1, Λ = d i a g ( λ 1 , λ 2 , . . . , λ n ) \Lambda=diag(\lambda_1,\lambda_2,...,\lambda_n) Λ=diag(λ1,λ2,...,λn)那么
A k = P Λ k P − 1 A^k=P\Lambda^k P^{-1} Ak=PΛkP1
φ ( A ) = P φ ( Λ ) P − 1 \varphi(A)=P\varphi(\Lambda) P^{-1} φ(A)=Pφ(Λ)P1
φ ( Λ ) = d i a g { φ ( λ 1 ) , φ ( λ 2 ) , . . . , φ ( λ n ) } \varphi(\Lambda)=diag\{\varphi(\lambda_1),\varphi(\lambda_2),...,\varphi(\lambda_n) \} φ(Λ)=diag{φ(λ1),φ(λ2),...,φ(λn)}

四、克拉默法则

如果线性方程组的系数矩阵 A A A的行列式不等于0,那么方程组有唯一解:
x i = ∣ A i ∣ ∣ A ∣ x_i=\frac{|A_i|}{|A|} xi=AAi
其中 A i A_i Ai是把 A A A中的第 i i i列使用常数项矩阵代替后所得到的n阶矩阵,即
A i = [ a 11 a 12 . . . b 1 . . . a 1 n a 21 a 22 . . . b 2 . . . a 2 n . . . . . . . . . . . . . . . . . . a m 1 a m 2 . . . b n . . . a m n ] A_i=\left[ \begin{matrix} a_{11} & a_{12} & ... & b_1 & ... & a_{1n}\\ a_{21} & a_{22} & ...& b_2 & ... & a_{2n} \\ ... & ... & ... & ... & ... & ... \\ a_{m1} & a_{m2} & ...& b_n & ... & a_{mn} \end{matrix} \right] Ai=a11a21...am1a12a22...am2............b1b2...bn............a1na2n...amn

五、矩阵分块法

A = [ A 11 . . . A 1 r . . . . . . . . . A s 1 . . . A s r ] , B = [ B 11 . . . B 1 r . . . . . . . . . B s 1 . . . B s r ] A=\left[ \begin{matrix} A_{11} & ... & A_{1r}\\ ... & ... & ... \\ A_{s1} & ...& A_{sr} \end{matrix} \right],B=\left[ \begin{matrix} B_{11} & ... & B_{1r}\\ ... & ... & ... \\ B_{s1} & ...& B_{sr} \end{matrix} \right] A=A11...As1.........A1r...Asr,B=B11...Bs1.........B1r...Bsr

运算法则:

1、加法

A + B = [ A 11 + B 11 . . . A 1 r + B 1 r . . . . . . . . . A s 1 + B s 1 . . . A s r + B s r ] A+B=\left[ \begin{matrix} A_{11}+B_{11} & ... & A_{1r}+B_{1r}\\ ... & ... & ... \\ A_{s1}+B_{s1} & ...& A_{sr}+B_{sr} \end{matrix} \right] A+B=A11+B11...As1+Bs1.........A1r+B1r...Asr+Bsr

2、与常数相乘

λ A = [ λ A 11 . . . λ A 1 r . . . . . . . . . λ A s 1 . . . λ A s r ] \lambda A=\left[ \begin{matrix} \lambda A_{11} & ... & \lambda A_{1r}\\ ... & ... & ... \\ \lambda A_{s1} & ...& \lambda A_{sr} \end{matrix} \right] λA=λA11...λAs1.........λA1r...λAsr

3、矩阵相乘

A B = [ C 11 . . . C 1 r . . . . . . . . . C s 1 . . . C s r ] AB=\left[ \begin{matrix} C_{11} & ... & C_{1r}\\ ... & ... & ... \\ C_{s1} & ...& C_{sr} \end{matrix} \right] AB=C11...Cs1.........C1r...Csr

其中

C i j = ∑ k = 1 t A i k B k j C_{ij}=\sum_{k=1}^{t}A_{ik}B_{kj} Cij=k=1tAikBkj

4、转置

A T = [ A 11 T . . . A s 1 t . . . . . . . . . A 1 r T . . . A s r T ] A^T=\left[ \begin{matrix} A_{11}^T & ... & A_{s1}^t \\ ... & ... & ... \\ A_{1r}^T& ...& A_{sr}^T \end{matrix} \right] AT=A11T...A1rT.........As1t...AsrT

5、分块对角矩阵

A = [ A 1 O A 2 . . . O A s ] A=\left[ \begin{matrix} A_{1} & & & O\\ & A_{2} & & \\ & &... & \\ O & && A_{s} \end{matrix} \right] A=A1OA2...OAs

则有:
∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ . . . ∣ A s ∣ |A|=|A_1||A_2|...|A_s| A=A1A2...As

A − 1 = [ A 1 − 1 O A 2 − 1 . . . O A s − 1 ] A^{-1}=\left[ \begin{matrix} A_{1}^{-1} & & & O\\ & A_{2}^{-1} & & \\ & &... & \\ O & && A_{s}^{-1} \end{matrix} \right] A1=A11OA21...OAs1

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值