矩阵A^TA(A'A)和AA^T(AA')的性质

本文探讨了矩阵A的转置与自身乘积ATA和自身与转置乘积AAT的性质,包括秩相等、对称半正定性、合同关系以及相同非零特征值。此外,还指出ATA与AT、AAT与A具有相同的列空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\quad 对于任意一个矩阵 A ∈ R m × n A\in R^{m\times n} ARm×n,其转置与它自身的乘积 A T A A^TA ATA,以及它自身与其转置的乘积 A A T AA^T AAT有如下性质:

1. r a n k ( A T A ) = r a n k ( A ) = r a n k ( A T ) = r a n k ( A A T ) rank(A^TA)=rank(A)=rank(A^T)=rank(AA^T) rank(ATA)=rank(A)=rank(AT)=rank(AAT)
\quad 证明:首先,显然有 r a n k ( A T A ) ≤ r a n k ( A ) rank(A^TA)\leq rank(A) rank(ATA)rank(A);
\quad 再由: A T A x = 0 ⇒ x T A T A x = 0 ⇒ A x = 0 A^TAx=0\Rightarrow x^TA^TAx=0\Rightarrow Ax=0 ATAx

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值