深度学习 损失函数综述

语义分割损失函数

在文章开始之前先贴出参考:A survey of loss functions for semantic segmentation,代码地址,语义分割资源综述。我主要是参考这两个方面,然后其他更多资料也可以自行Google一下。本文章主要是以A survey of loss functions for semantic segmentation为主展开,并且尽可能地配上代码。

在这里插入图片描述

基于分布损失函数(Distribution-base loss)

Binary Cross-Entropy

公式:

在这里插入图片描述

该损失主要是针对二分类的损失,当背景数量>>目标像素数量,模型会严重偏向背景

Weighted Cross-Entropy

为解决分类类别不均衡问题,提出了Weighted Cross-Entropy。公式:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ynowgq5g-1631970391001)(https://www.zhihu.com/equation?tex=%5Ctext+%7Bpos_weight%7D+%3D+%5Cfrac%7B%5Ctext+%7Bnum_neg%7D%7D%7B%5Ctext+%7Bnum_pos%7D%7D+%5C%5C+%5Ctext+%7Bloss%7D+%3D+-+%5Ctext+%7Bpos_weight%7D+%5Ctimes+y_%7Btrue%7D+log+%28y_%7Bpred%7D%29+-+%281-y_%7Btrue%7D%29+log+%281-y_%7Bpred%7D%29%5C%5C)]

Balanced Cross-Entropy

这个损失函数的公司类似于MAE。与Weighted Cross-Entropy不同的是,Balanced Cross-Entropy对负样本也进行加权。

公式:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6WWKEzA5-1631970391007)(src/Balanced-CE-loss.png)]

Focal Loss


Focal loss主要解决两方面的问题:1. 解决正负样本不均衡的问题,里面的 α t \alpha_t αt参数负责控制;2. 解决正样本中的难易样本的区分,由 ( 1 − p t ) γ (1-p_t)^{\gamma} (1pt)γ负责控制。该文章从二分类入手,首先我们看一下二分类的损失函数,binary cross entropy 简称BCE,由下式定义: L c e = − y log ⁡ y ^ − ( 1 − y ) log ⁡ ( 1 − y ^ ) = { − log ⁡ ( 1 − y ^ ) , y = 0 − log ⁡ ( y ^ ) , y = 1 L_{ce}=-y\log\hat{y}-(1-y)\log(1-\hat{y})=\{^{-\log(\hat{y}), y=1}_{-\log(1-\hat{y}), y=0} Lce=ylogy^(1y)log(1y^)={log(1y^),y=0log(y^),y=1,其中 y y y为真实的标签, y ^ \hat{y} y^为预测标签。关于二分类的损失函数以及多分类的cross_entropy损失函数可以参考我的一篇博客:深度学习 交叉熵损失函数

Distance map derived loss penatly term

在这里插入图片描述

基于区域损失函数(Region-based)

Dice Loss

Sensitivity-Specificity Loss

Tversky Loss

论文地址:https://arxiv.org/pdf/1706.05721.pdf

在这里插入图片描述

Focal Tversky Loss

在这里插入图片描述

Log-Cosh Dice Loss

在这里插入图片描述

基于边界的损失函数(Boundary-based)

Hausdorff Distance Loss

在这里插入图片描述

Shape aware Loss

在这里插入图片描述

复合的损失函数(Compounded Loss)

Combo Loss

在这里插入图片描述

Exponential Logarithmic Loss

在这里插入图片描述

总结

在这里插入图片描述

参考

  1. 一文看尽15种语义分割损失函数(含代码解析)
  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习综述.pdf》是一篇综述性的论文,主要介绍了深度学习的发展历程、基本概念和应用领域等。深度学习是一种人工神经网络算法,通过模拟人脑神经元的工作方式来实现对大规模数据的学习和分析。它是人工智能领域的研究热点之一,具有广阔的应用前景。 该论文首先介绍了深度学习的起源和发展历程。深度学习起源于上世纪六七十年代,但由于当时计算能力和数据规模的限制,直到近年来才得到广泛应用。之后,论文详细介绍了深度学习的基本概念,包括神经网络结构、激活函数、损失函数等,并对常用的深度学习模型进行了分类和比较。 接着,论文探讨了深度学习在计算机视觉、自然语言处理、语音识别等领域的应用。通过深度学习,计算机可以自动从大量图像、文本或语音数据中提取特征,并进行分类、识别等任务。这些应用不仅在学术界受到广泛关注,也在工业界得到了广泛应用,如人脸识别技术、自动驾驶等。 此外,论文还讨论了深度学习的发展趋势和挑战。深度学习在解决许多问题上取得了显著成绩,但仍面临数据稀缺、模型解释性不足、计算资源消耗大等问题。未来的发展应该着重于提高模型的鲁棒性、解释性和效率,并结合其他领域的研究成果进行深度学习的拓展和改进。 总的来说,该论文对深度学习进行了全面的综述,介绍了其基本概念、应用领域和发展趋势,对于了解和研究深度学习具有较高的参考价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值