损失函数综述
语义分割损失函数
在文章开始之前先贴出参考:A survey of loss functions for semantic segmentation,代码地址,语义分割资源综述。我主要是参考这两个方面,然后其他更多资料也可以自行Google一下。本文章主要是以A survey of loss functions for semantic segmentation为主展开,并且尽可能地配上代码。
基于分布损失函数(Distribution-base loss)
Binary Cross-Entropy
公式:
该损失主要是针对二分类的损失,当背景数量>>目标像素数量,模型会严重偏向背景
Weighted Cross-Entropy
为解决分类类别不均衡问题,提出了Weighted Cross-Entropy。公式:
Balanced Cross-Entropy
这个损失函数的公司类似于MAE。与Weighted Cross-Entropy不同的是,Balanced Cross-Entropy对负样本也进行加权。
公式:
Focal Loss
Focal loss
主要解决两方面的问题:1. 解决正负样本不均衡的问题,里面的 α t \alpha_t αt参数负责控制;2. 解决正样本中的难易样本的区分,由 ( 1 − p t ) γ (1-p_t)^{\gamma} (1−