深度学习 损失函数综述

语义分割损失函数

在文章开始之前先贴出参考:A survey of loss functions for semantic segmentation,代码地址,语义分割资源综述。我主要是参考这两个方面,然后其他更多资料也可以自行Google一下。本文章主要是以A survey of loss functions for semantic segmentation为主展开,并且尽可能地配上代码。

在这里插入图片描述

基于分布损失函数(Distribution-base loss)

Binary Cross-Entropy

公式:

在这里插入图片描述

该损失主要是针对二分类的损失,当背景数量>>目标像素数量,模型会严重偏向背景

Weighted Cross-Entropy

为解决分类类别不均衡问题,提出了Weighted Cross-Entropy。公式:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ynowgq5g-1631970391001)(https://www.zhihu.com/equation?tex=%5Ctext+%7Bpos_weight%7D+%3D+%5Cfrac%7B%5Ctext+%7Bnum_neg%7D%7D%7B%5Ctext+%7Bnum_pos%7D%7D+%5C%5C+%5Ctext+%7Bloss%7D+%3D+-+%5Ctext+%7Bpos_weight%7D+%5Ctimes+y_%7Btrue%7D+log+%28y_%7Bpred%7D%29+-+%281-y_%7Btrue%7D%29+log+%281-y_%7Bpred%7D%29%5C%5C)]

Balanced Cross-Entropy

这个损失函数的公司类似于MAE。与Weighted Cross-Entropy不同的是,Balanced Cross-Entropy对负样本也进行加权。

公式:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6WWKEzA5-1631970391007)(src/Balanced-CE-loss.png)]

Focal Loss


Focal loss主要解决两方面的问题:1. 解决正负样本不均衡的问题,里面的 α t \alpha_t αt参数负责控制;2. 解决正样本中的难易样本的区分,由 ( 1 − p t ) γ (1-p_t)^{\gamma} (1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值