关于Transformer一些细节的讨论

Transformer 细节的讨论

Transformer 能力已经得到普遍性的认可,尤其是其中 注意机制(attention mechanism)更是备受推崇,有非常多的博文已经对transformer进行深入的剖析, 比方说 The Illustrated Transformer。 在读了很多不同的博文之后, 我还是遇到不少的理解性的问题, 在这篇文章里,我主要是阐述我遇到的这几个问题,并且对它们的理解

问题1: Positional Encoding 的作用

Positional Encoding 顾名思义 就是对于位置的编码,为什么需要对位置进行编码, 这就是要涉及到attention 机制里面的 点乘的运算了
a t t e n t i o n ( Q , K , V ) = softmax ⁡ ( Q K T d k ) V \mathrm{attention}(Q,K,V)=\operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V attention(Q,K,V)=softmax(dk QKT)V
其中 Q , K , V Q,K,V Q,K,V 分别是 query, key, value. 我们可以看出, Q K T QK^T QKT 是无法将位置表示出来的,而我们知道在自然语言的处理中,我们要处理的就是 seq2seq的语句,换句话说就是我们需要知道他们之间的上下关系。但是attention 的强大在与它能够跟每一个词都进行关联性学习,从而获得最真实的注意部分。 为了能够让transformer 结合attention 的优点又可以考虑seq2seq的前提条件, 对于位置的编码就可以应运而生,而且文中提到的方式也非常的简单,利用 sin 和cos 的几何特性指定位置信息,然后给每个词加上 它的位置信息就可以实现目的,代码如下

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x)
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值