Fast rcnn cpu 训练自己的数据

本文详细阐述如何在CPU环境下安装Faster R-CNN,运行demo以及训练自定义数据集。首先确保已安装Caffe,然后根据步骤修改相关配置文件以适应CPU模式。训练时,需要替换模型参数,调整配置文件以匹配目标类别,并对脚本进行修改以适应CPU训练。完成这些步骤后,即可开始训练过程。
摘要由CSDN通过智能技术生成

本文介绍如何在 cpu 模式下使用 Faster RCNN demo,以及在cpu 模式下训练自己的数据。

Install Faster-rcnn

源码地址:https://github.com/rbgirshick/py-faster-rcnn

由于 faster rcnn 依赖是基于 caffe 的,所以需要先安装 caffe,所以前提是你已经在本机上装过 caffe ,然后直接复制该 Makefile.config 到目录 $FRCN_ROOT/caffe-fast-rcnn 下然后执行 make -j8 && make pycaffe 即可。

Run demo in cpu

安装完后可以跑个 demo 试试

cd $FRCN_ROOT
./tools/demo.py

如果出现如下错误:

ImportError: No module named gpu_nms

说明 demo.py 脚本默认使用 gpu 检测物体,如果想要使用 cpu 修要做如下修改:

  • $FRCN_ROOT/lib/setup.py 中含有nms.gpu_nms的部分注释掉,注释后的内容如下。同时需要将该文件中 58 行左右的 CUDA = locate_cuda() 也注释掉。
ext_modules = [
    Extension(
        "utils.cython_bbox",
        ["utils/bbox.pyx"],
        extra_compile_args={
  'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
        include_dirs = [numpy_include]
 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值