空间域图像增强及MATLAB实现

本文介绍了空间域图像增强的知识,包括相关法和卷积的区别,高斯平滑,中值滤波及其对椒盐噪声的去除效果。讨论了Robert交叉梯度和Sobel算子的边缘检测能力,并提出二阶Laplacian模板和Log变换在边缘增强与噪声抑制中的作用。最后,探讨了高斯-Laplace算子作为先平滑后锐化的优化策略。
摘要由CSDN通过智能技术生成

(一)空间域图像增强知识点梳理:





(二)图像平滑
2.1 图像滤波

%%%图像滤波
%{
函数: g=imfilter(f,w,'corr','replicate');
参数:    f:待处理图像
		w:模板
		后续参数1:模式选项
					‘corr’:滤波过程为相关
					‘conv’:滤波过程为卷积
	后续参数2:边界选项
		    X(表示一个数字):用数字X填充,默认为0;
		   ‘replicate’:重复以边缘像素填充
		   ‘symmetric’:以原图像边缘像素取镜像得到
		    ‘circular’:人为原图像具有周期性,以周期性填充虚拟边界
返回值:处理后图像矩阵
%}
f=imread('man.bmp');
imshow(f);
hold on
w=[1,1,1;1,1,1,;1,1,1]/9  %模板
g=imfilter(f,w,'corr','replicate');%重复填充
figure,imshow(g);


g1=imfilter(f,w,'conv');%默认用0填充,会出现黑边
figure,imshow(g1);%在新窗口显示图像(可现实多幅,之前的不会消失) figure,imshow(im)

运行结果:


    由上图,图1为原图,图2为相关法滤波,图3为卷积法滤波,可发现平均滤波后图像变模糊,细节弱化。而且,相关法默认用0填充,会出现黑边(细看图3 的图片边缘有黑边)。

注意:相关和卷积有和不同?

相关是滤波器模板移过图像并计算计算每个位置乘积之和的处理。卷积的机理相似,但滤波器首先要旋转180度
相关的计算步骤:
(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方
(2)将输

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值