文章目录
1. 介绍与概述
1.1 Ray 的背景与历史
- Ray 的起源:介绍 Ray 的发展背景,由 UC Berkeley 的 RISELab 开发,目标是简化大规模并行计算的复杂性。
- 主要版本与演变:回顾 Ray 的主要版本发布历程及关键功能的演变。
- 社区与支持:介绍 Ray 的开源社区、贡献者及其支持的生态系统。
1.2 Ray 的应用场景
- 分布式计算:如何利用 Ray 进行大规模数据处理和并行计算。
- 机器学习与深度学习:Ray 在训练和调优机器学习模型中的应用,例如超参数调优(Ray Tune)和模型服务(Ray Serve)。
- 强化学习:Ray RLlib 在强化学习任务中的应用。
- 数据处理与管道:Ray Data 用于高效的数据管道构建和处理。
1.3 Ray 的核心概念与架构
- Ray 核心组件:Ray 的主要模块,包括调度器、对象存储和任务执行。
- 任务与远程函数:Ray 的任务模型及远程函数的工作机制。
- 调度系统:Ray 的调度算法及其如