多分类文本处理与特征工程

多分类文本处理与特征工程

1. 语言模型

语言模型(LM,Language Model)就是用来判断某个句子是否语义通顺。首先对句子进行分词,句子的概率可以表示为各个词的联合概率: P ( s ) = P ( w 1 , w 2 , . . . , w n ) P(s)=P(w_1,w_2,...,w_n) P(s)=P(w1,w2,...,wn)

根据Chain rule: P ( A , B , C , D ) = P ( A ) P ( B ∣ A ) P ( C ∣ A , B ) P ( D ∣ A , B , C ) P(A,B,C,D)=P(A)P(B|A)P(C|A,B)P(D|A,B,C) P(A,B,C,D)=P(A)P(BA)P(CA,B)P(DA,B,C),可以转化:

P ( s ) = P ( w 1 , w 2 , . . . , w n ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) . . . P ( w n ∣ w 1 , w 2 , w 3 , . . . , w n − 1 ) P(s)=P(w_1,w_2,...,w_n)=P(w_1)P(w_2|w_1)P(w_3|w_1,w_2)...P(w_n|w_1,w_2,w_3,...,w_{n-1}) P(s)=P(w1,w2,...,wn)=P(w1)P(w2w1)P(w3w1,w2)...P(wnw1,w2,w3,...,wn1)
对于概率 P ( w n ∣ w 1 , w 2 , w 3 , . . . , w n − 1 ) P(w_n|w_1,w_2,w_3,...,w_{n-1}) P(wnw1,w2,w3,...,wn1),条件很长,corpus里找不到单词,就容易导致稀疏性(sparsity),因此引入Markov Assumption:

  • Unigram Model(1-gram): P ( w n ∣ w 1 , w 2 , w 3 , . . . , w n − 1 ) = P ( w n ) P(w_n|w_1,w_2,w_3,...,w_{n-1})=P(w_n) P(wnw1,w2,w3,...,wn1)=P(wn)
  • Bigram Model(2-gram): P ( w n ∣ w 1 , w 2 , w 3 , . . . , w n − 1 ) = P ( w n ∣ w n − 1 ) P(w_n|w_1,w_2,w_3,...,w_{n-1})=P(w_n|w_{n-1}) P(wnw1,w2,w3,...,wn1)=P(wnwn1)
  • Trigram Model(3-gram): P ( w n ∣ w 1 , w 2 , w 3 , . . . , w n − 1 ) = P ( w n ∣ w n − 2 , w n − 1 ) P(w_n|w_1,w_2,w_3,...,w_{n-1})=P(w_n|w_{n-2},w_{n-1}) P(wnw1,w2,w3,...,wn1)=P(wnwn2,wn1)
  • N-gram Model

因此,语言模型可表示为:

  • Unigram Model: P ( w 1 , w 2 , . . . , w n ) = ∑ i = 1 n P ( w i ) P(w_1,w_2,...,w_n)= \sum_{i=1}^n P(w_i) P(w1,w2,...,wn=i=1nP(wi)
  • Bigram Model: P ( w 1 , w 2 , . . . , w n ) = P ( w 1 ) ∑ i = 2 n P ( w i ∣ w i − 1 ) P(w_1,w_2,...,w_n)= P(w_1)\sum_{i=2}^n P(w_i|w_{i-1}) P(w1,w2,...,wn=P(w1)i=2nP(wiwi1)
  • Trigram Model: P ( w 1 , w 2 , . . . , w n ) = P ( w 1 ) P ( w 2 ∣ w 1 ) ∑ i = 3 n P ( w i ∣ w i − 1 , w i − 2 ) P(w_1,w_2,...,w_n)= P(w_1)P(w_2|w_1)\sum_{i=3}^n P(w_i|w_{i-1},w_{i-2}) P(w1,w2,...,wn=P(w1)P(w2w1)i=3nP(wiwi1,wi2)

那么如何估计每个单词的概率呢?统计语料库corpus里出现的单词的频数来估计概率,即模型的训练过程。

比如,根据以下不同阶段的工作或选择构建不同的LM?

  • N-gram里N的选择:Unigram, Bigram, Trigram,…
  • 平滑处理方法的不同:Laplace smoothing, Interpolation, Good-Turing smoothing等10几种方法。(计算概率避免出现概率为0,在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0。)
  • 预处理方法:预料中去掉某些特定的人名地名等词,停用词等。

1.1 模型评估(概率估计)

根据不同的选择可以有很多LM,又如何从中选择最好的一个呢?训练出来的语言模型效果是好还是坏?

理想情况下:

  1. 假设有语言模型A,B
  2. 选定一个特定的任务,比如拼写纠错,机器翻译(MT,Machine Translation)
  3. 把两个模型都应用到此任务中
  4. 最后比较准确率,从而判断A,B的表现

核心思路: P ( w 1 , w 2 , . . . , w n ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) . . . P ( w n ∣ w 1 , w 2 , w 3 , . . . , w n − 1 ) P(w_1,w_2,...,w_n)= P(w_1)P(w_2|w_1)P(w_3|w_1,w_2)...P(w_n|w_1,w_2,w_3,...,w_{n-1}) P(w1,w2,...,wn)=P(w1)P(w2w1)P(w3w1,w2)...P(wnw1,w2,w3,...,wn1)使概率乘积最大。

更简单的评估方法,不需要放在特定任务中——Perplexity

P e r p l e x i t y = 2 − x , x : a v e r a g e l o g l i k e l i h o o d Perplexity=2^{-x}, x:average\quad log\quad likelihood Perplexity=2x,x:averageloglikelihood
i.e. Bigram Model: P ( w 1 , w 2 , w 3 , w 4 , w 5 ) P(w_1,w_2,w_3,w_4,w_5) P(w1,w2,w3,w4,w5)

l o g P ( w 1 ) + l o g P ( w 2 ∣ w 1 ) + l o g P ( w 3 ∣ w 2 ) + l o g P ( w 4 ∣ w 3 ) + l o g P ( w 5 ∣ w 4 ) 5 = x ⟹ 2 − x \frac{logP(w_1)+logP(w_2|w_1)+logP(w_3|w_2)+logP(w_4|w_3)+logP(w_5|w_4)}{5} = x \Longrightarrow 2^{-x} 5logP(w1)+logP(w2w1)+logP(w3w2)+logP(w4w3)+logP(w5w4)=x2x

Perplexity越小(LM中所有单词的概率乘积越大),LM越好

1.2 平滑方法

为了解决使用N-Gram模型时可能引入的稀疏数据问题,人们设计了多种平滑算法。
计算概率应避免出现概率为0,在文本分类的问题中,当一个词语没有在训练样本中出现,该词语的概率为0,使用连乘计算文本出现概率时也为0。

可以用平滑处理方法:Laplace smoothing, Interpolation, Good-Turing smoothing等10几种方法。

  • Add-one Smoothing(Laplace Smoothing)

P ( w i ∣ w i − 1 ) = c ( w i − 1 , w i ) + 1 c ( w i − 1 ) + V P(w_i|w_{i-1})=\frac{c(w_{i-1},w_i)+1}{c(w_{i-1})+V} P(wiwi1)=c(wi1)+Vc(wi1,wi)+1

,V是词库大小(分母+V为了归一化,所有概率和=1)

  • Add-K Smoothing(Laplace Smoothing)

P ( w i ∣ w i − 1 ) = c ( w i − 1 , w i ) + k c ( w i − 1 ) + k V P(w_i|w_{i-1})=\frac{c(w_{i-1},w_i)+k}{c(w_{i-1})+kV} P(wiwi1)=c(wi1)+kVc(wi1,wi)+k

,V是词库大小(V=set(corpus))

  • Interpolation插值

    在使用插值算法时,把不同阶别的N-Gram模型线性加权组合后再来使用。简单线性插值(Simple Linear Interpolation)可以用下面的公式来定义:

P ( w i ∣ w i − 2 , w i − 1 ) = λ 1 P ( w i ) + λ 2 P ( w i ∣ w i − 1 ) + λ 3 P ( w i − 2 , w i − 1 ) λ 1 + λ 2 + λ 3 = 1 P(w_i|w_{i-2},w_{i-1})=\lambda_1P(w_i)+\lambda_2P(w_i|w_{i-1})+\lambda_3P(w_{i-2},w_{i-1}) \\ \lambda_1 + \lambda_2 + \lambda_3 = 1 P(wiwi2,wi1)=λ1P(wi)+λ2P(wiwi1)+λ3P(wi2,wi1)λ1+λ2+λ3=1

  • Good-Turing smoothing

    基本思想: 用观察计数较高的 N-gram 数量来重新估计概率量大小,并把它指派给那些具有零计数或较低计数的 N-gram.

    Idea: reallocate the probability mass of n-grams that occur r+1 times in the training data to the n-grams that occur r times.

    在 Good Turing 下,对每一个计数 r,我们做一个调整,变为 r’,n_r表示出现过r次的N-gram:

r ′ = ( r + 1 ) n r + 1 / n r P ( x : c ( x ) = r ) = r ′ / N r'= (r+1)n_{r+1}/n_r \\ P(x:c(x)=r)=r'/N r=(r+1)nr+1/nrP(x:c(x)=r)=r/N

1.3 LM在拼写纠正(Spell Correction)中的应用

一般地,拼写错误有两种:第一,词拼写错;第二,没有错词,语法有问题。

对于错词,之前的方法VS现在的方法

之前的方法:

用户输入 --> 从词典中寻找编辑距离最小的词(需要遍历整个词典O(|V|) --> 返回

现在的方法:

用户输入 --> 生成编辑距离为1,2的字符串(candidates) --> 过滤 (根据上下文)--> 返回

如何过滤?

假设w是错词,改成正确的形式c:
c ∗ = arg ⁡ max ⁡ c ∈ C a n d i d a t e s P ( c ∣ w ) = arg ⁡ max ⁡ c ∈ C a n d i d a t e s P ( w ∣ c ) P ( c ) / P ( w ) = arg ⁡ max ⁡ c ∈ C a n d i d a t e s P ( w ∣ c ) P ( c ) c^{*} = \mathop{\arg\max}\limits_{c \in Candidates} P(c|w) \\ = \mathop{\arg\max}\limits_{c \in Candidates} P(w|c)P(c)/P(w) \\ = \mathop{\arg\max}\limits_{c \in Candidates} P(w|c)P(c) c=cCandidatesargmaxP(cw)=cCandidatesargmaxP(wc)P(c)/P(w)=cCandidatesargmaxP(wc)P(c)

P ( w ∣ c ) P(w|c) P(wc)是(w,c)相关的score, P ( c ) P(c) P(c)是语言模型

第一,词拼写错:

  1. 首先是获取candidates,w所有可能的c,有两种方法来过滤出最优的正确词。

    • Edit Distance
      设定不同编辑距离下(w,c)相关的score,例如d=1, score=0.8; d=2, score=0.2; other, score=0.

    • Collected data
      P(w|c):当用户拼c时,有多少概率把它拼错位w?
      从搜索引擎可以得到相关的历史数据,例如输入搜索词“appl",搜索框历史给出相关的可能的匹配词,统计出现的频率即可。

  2. 然后对候选词根据N-gram的概率最大化来选择最优的词c。

第二,没有错词,语法有问题。

根据LM来检查。

2. 预处理

  1. 过滤词

    先把停用词、特殊的标点符号、出现频率很低的词过滤掉。

  2. 英文:Normalization (Lemmatization词形还原、Stemming词干提取)

3. Word Representation: 独热编码,tf-idf

    1. 词表示:0-1 one-hot encoding --> 句子表示:0-1(Boolean)

      构建词库V,对每个句子的表示:根据每个分词是否在V中出现(0/1),表示向量的大小为|V|。

    1. 词表示:0-1 one-hot encoding --> 句子表示:0-1(Count)

      构建词库V,对每个句子的表示:统计每个分词在V中出现次数,表示向量的大小为|V|。

    1. 句子相似度:欧式距离,余弦相似度
    1. TF-IDF: t f i d f ( w ) = t f ( d , w ) ∗ i d f ( w ) tfidf(w)=tf(d,w)*idf(w) tfidf(w)=tf(d,w)idf(w)

      t f ( d , w ) tf(d,w) tf(d,w): 文档d中w的词频

      i d f ( w ) idf(w) idf(w): = l o g ( N N ( w ) ) =log(\frac{N}{N(w)}) =log(N(w)N),单词的重要性,逆文档频率(inverse document frequency)

      N: 语料库中的文档总数

      N(w): 词语w出现在多少个文档中

4. Word2Vec

one-hot representation:无法表示词的meaning,数据稀疏性

one-hot representation —>distributed representation

4.1 Word Embedding

Word Embedding 词向量模型:(依据分布式假设:挨在一起的单词的相似度更高)

传统: SkipGram, CBOW,Glove, FastText, Matrix Factorization(MF)

考虑上下文(动态表征):ELMo, BERT, XLNet

词向量降维:T-sne

Word Embedding --> Sentence Embedding: Average Pooling, Max Pooling, …

  • SkipGram: 经典的局部方法,根据window-size选取关联的上下文词。Make use of context window。

  • FastText核心思想:解决OOV(out-of-vocabulary)问题,一些出现频率低的词处理问题。利用n-gram feature,在训练过程中考虑每个单词的2-gram, 3-gram, 4-gram等子词特征,特征融合后利用SkipGram进行训练。

  • Matrix Factorization: 经典的全局方法,make use of co-occurance counts

  • Glove: 同时结合全局性(如MF)和局部性(如SkipGram),使用加权的最小平方误差。Use weighted least square error.

Question: CBOW和Skip-Gram哪个更好?

不一定,但一般Skip-Gram效果好于CBOW:

  1. Data size(window size):例如在 w 1 , w 2 , w 3 , w 4 , w 5 {w_1,w_2,w_3,w_4,w_5} w1,w2,w3,w4,w5中,window size = 1, CBOW中有3个样本,Skip-Gram中有8个样本。
  2. 难易度:CBOW由多个上下文词预测中心词相对简单,Skip-Gram由单个中心词预测上下文词相对困难。
  3. Smoothing effect:在CBOW中,对于出现次数少的词效果不好,对于出现次数多的词效果很好。上下文单词中有词频多与少的词被Average Pooling(平均值)过程综合了部分单词特征:平均值减弱了词频数少的单词的表示效果。

4.2 Gaussian Embedding

用来衡量两个概率分布的相似度/差异性:KL Divergence(Kullback–Leibler divergence,KL散度)

对于概率分布P(x)和Q(x):

D ( P ∣ ∣ Q ) = ∑ P ( x ) l o g ( P ( x ) / Q ( x ) ) D(P||Q)= \sum P(x)log(P(x)/Q(x)) D(PQ=P(x)log(P(x)/Q(x))

P(x)和Q(x)相似性越高,KL散度越小。

问题:对corpus中出现频率高和低的词学习到的词向量有什么问题?

从统计学角度,出现次数多的可信度更高,对于每个词的词向量可以计算概率分布 N ( μ , σ ) N(\mu,\sigma) N(μ,σ)。通过计算两个词向量分布之间的KL散度,判断相似性高低。

4.3 Contextual Embedding

解决一词多义问题。

考虑上下文:ELMo, BERT, XLNet

5. 文本特征工程

Text Features:

  • tf-idf:词库大小|V|
  • Word2vec/Sentence2Vec: 词向量的嵌入维数k
  • n-gram:使用bigram,trigram等特征,大小S>>|V|
  • POS词性
  • 主题特征:可以LDA计算得到
  • Task-specific features:
    • word count (每句话有多少单词)
    • 大写有多少个?
    • 是否包含人名?(0/1)
    • 字符的长度
    • 句子的长度
    • (情感分析)出现多少个负面词?
    • (情感分析)出现多少个正面词?
    • (情感分析)出现多少个否定词?

n-gram特征:对于词库V,Bi-gram可以构建从V中选出任意两个词的所有组合,(组合个数)大小为S>>|V|(每两个词看作是一个“词”,形成新的词库),对于corpus里每个句子,可以根据Bi-gram进行0-1编码(对句子单词前后两两组合,如果组合出现在Bi-gram就为1,否则0)。

欢迎各位关注我的个人公众号:HsuDan,我将分享更多自己的学习心得、避坑总结、面试经验、AI最新技术资讯。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值