集成学习-AdaBoost-(分类)

1. 概念

1.1 League of Legends 还是 AdaBoost?

LOL打团的思想是这样的:对面开团时,五个英雄各自有各自的作用,坦克要够肉,ADC要足够猥琐输出……所以,类型越全面,对面越容易团灭。
其实AdaBoost模型和LOL打团是一样一样的。面对数据集,每个基学习器(英雄)都有各自关注的部分,覆盖的越全面,学习效果越好。而且,有一定的先后顺序:先控再输出。。。
键盘侠

1.2 真正的AdaBoost

1.2.1 样本空间

假定给定一个二分类的训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(\boldsymbol{x_1}, y_1),(\boldsymbol{x_2}, y_2),...,(\boldsymbol{x_N}, y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i \boldsymbol{x_i} xi是一个 1 ∗ d 1*d 1d维的向量,标签 y i ∈ Y = { − 1 , 1 } y_i \in Y=\{-1, 1\} yiY={1,1}

1.2.2 表达式

F T ( x ) = ∑ t = 1 T α t f t ( x ) (1.1) \begin{aligned} F_T(\boldsymbol{x})=\sum_{t=1}^{T} \alpha_tf_t(\boldsymbol{x})\tag{1.1} \end{aligned} FT(x)=t=1Tαtft(x)(1.1)
在公式 ( 1.1 ) (1.1) (1.1)中, f t ( x ) f_t(\boldsymbol{x}) ft(x)是弱学习器的计算结果, f t f_t ft是弱学习器模型, T T T是弱学习器的数量。
在每迭代过程中,每次迭代都会选择一个弱学习器,并且给其分配一个权重 α t \alpha_t αt,这样的话,对于第 i i i个样本而言 ( i ≤ N ) (i\leq N) (iN),整个AdaBoost模型在第 t t t轮时的训练误差 E t E_t Et可以表达为:
E t = ∑ i = 1 N E [ F t − 1 ( x i ) + α t f t ( x i ) ] (1.2) \begin{aligned} E_t=\sum_{i=1}^{N}E[F_{t-1}(\boldsymbol{x_i})+\alpha_t f_t(\boldsymbol{x_i})]\tag{1.2} \end{aligned} Et=i=1NE[Ft1(xi)+αtft(xi)](1.2)
在公式 ( 1.2 ) (1.2) (1.2) F t − 1 ( x i ) F_{t-1}(\boldsymbol{x_i}) Ft1(xi)是根据之前 t − 1 t-1 t1次迭代得到的模型, f t ( x i ) f_t(\boldsymbol{x_i}) ft(xi)是本轮学习的弱学习器,在学习完成之后会添加到最终模型中。

1.2.3 AdaBoost的损失函数

函数表达式:
L ( y , f ( x ) ) = e [ − y f ( x ) ] (1.3) L(y, f(x))=e^{[-yf(x)]} \tag{1.3} L(y,f(x))=e[yf(x)](1.3)
图1.1 函数图像
这里多说一句:为什么损失函数是公式(1.3)的样子,而不是我们常见的 L ( y , f ( x ) ) = 1 2 ( y − f ( x ) ) 2 L(y, f(x))=\frac{1}{2}(y-f(x))^2 L(y,f(x))=21(yf(x))2?

解答:在AdaBoost算法中,我们所关心的只是每一个弱分类器结果的符号,而真正影响模型最后输出结果的是那些离群值所对应的权重。

1.2.4 AdaBoost 的前生今世

假设经过了 m − 1 m-1 m1代之后( m < T m<T m<T),对于第 i i i个样本而言,公示 ( 1.1 ) (1.1) (1.1)可以表示为
F m − 1 ( x i ) = α 1 f 1 ( x i ) + α 2 f 2 ( x i ) + . . . + α m − 1 f m − 1 ( x i ) (1.4) \begin{aligned} F_{m-1}(\boldsymbol{x_i})=&\alpha_1f_1(\boldsymbol{x_i})+\alpha_2f_2(\boldsymbol{x_i})+...+\alpha_{m-1}f_{m-1}(\boldsymbol{x_i}) \tag{1.4} \end{aligned} Fm1(xi)=α1f1(xi)+α2f2(xi)+...+αm1fm1(xi)(1.4)
根据公式 ( 1.3 ) (1.3) (1.3)
F m ( x i ) = F m − 1 ( x i ) + α m f m ( x i ) (1.5) \begin{aligned} F_{m}(\boldsymbol{x_i})=F_{m-1}(\boldsymbol{x_i})+\alpha_{m}f_{m}(\boldsymbol{x_i}) \tag{1.5} \end{aligned} Fm(xi)=Fm1(xi)+αmfm(xi)(1.5)
当损失函数为Exponential loss的时候:
E = ∑ i = 1 N e − y i F m ( x i ) = ∑ i = 1 N e − y i ( F m − 1 ( x i ) + α m f m ( x i ) ) = ∑ i = 1 N e − y i F m − 1 ( x i ) − y i α m f m ( x i ) = ∑ i = 1 N e − y i F m − 1 ( x i ) e − y i α m f m ( x i ) (1.6) \begin{aligned} E=&\sum_{i=1}^{N}e^{-y_iF_{m}(\boldsymbol{x_i})}\\ =&\sum_{i=1}^{N}e^{-y_i(F_{m-1}(\boldsymbol{x_i})+\alpha_{m}f_{m}(\boldsymbol{x_i}))}\\ =&\sum_{i=1}^{N}e^{-y_iF_{m-1}(\boldsymbol{x_i})-y_i\alpha_{m}f_{m}(\boldsymbol{x_i})}\\ =&\sum_{i=1}^{N}e^{-y_iF_{m-1}(\boldsymbol{x_i})}e^{-y_i \alpha_{m}f_{m}(\boldsymbol{x_i})}\tag{1.6} \end{aligned} E====i=1NeyiFm(xi)i=1Neyi(Fm1(xi)+αmfm(xi))i=1NeyiFm1(xi)yiαmfm(xi)i=1NeyiFm1(xi)eyiαmfm(xi)(1.6)
公式 ( 1.6 ) (1.6) (1.6)中,由于 e − y i F m − 1 ( x i ) e^{-y_iF_{m-1}(\boldsymbol{x_i})} eyiFm1(xi)是一个定值,记为 w i w_i wi。所以,假设 w i ( 1 ) = 1 w_i^{(1)}=1 wi(1)=1,且当 m > 1 m>1 m>1时,有 w i ( m ) = e − y i F m − 1 ( x i ) w_i^{(m)}=e^{-y_iF_{m-1}(\boldsymbol{x_i})} wi(m)=eyiFm1(xi),则公式 ( 1.6 ) (1.6) (1.6)可以记为:
E = ∑ i = 1 N w i ( m ) e − y i α m f m ( x i ) (1.7) \begin{aligned} E=&\sum_{i=1}^{N}w_i^{(m)}e^{-y_i\alpha_{m}f_{m}(\boldsymbol{x_i})}\tag{1.7} \end{aligned} E=i=1Nwi(m)eyiαmfm(xi)(1.7)
如果在样本空间中,AdaBoost模型能够正确分类的情况下,有: y i f m ( x i ) = 1 y_if_{m}(\boldsymbol{x_i})=1 yifm(xi)=1;当分类错误时: y i f m ( x i ) = − 1 y_if_{m}(\boldsymbol{x_i})=-1 yifm(xi)=1。因此,公式 ( 1.7 ) (1.7) (1.7)可以写为:
E = ∑ y i = f m ( x i ) N w i ( m ) e − α m + ∑ y i ≠ f m ( x i ) N w i ( m ) e α m = ∑ y i = f m ( x i ) N w i ( m ) e − α m + ∑ y i ≠ f m ( x i ) N w i ( m ) e α m − ∑ y i ≠ f m ( x i ) N w i ( m ) e − α m + ∑ y i ≠ f m ( x i ) N w i ( m ) e − α m = ∑ i = 1 N w i ( m ) e − α m + ∑ y i ≠ f m ( x i ) N w i ( m ) e α m − ∑ y i ≠ f m ( x i ) N w i ( m ) e − α m = ∑ i = 1 N w i ( m ) e − α m + ∑ y i ≠ f m ( x i ) N w i ( m ) ( e α m − e − α m ) (1.8) \begin{aligned} E=&\sum_{y_i=f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)} e^{-\alpha_{m}}+ \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)} e^{\alpha_{m}} \\ =& \sum_{y_i = f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}e^{-\alpha_{m}}+ \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N} w_i^{(m)}e^{\alpha_{m}}- \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}e^{-\alpha_{m}}+ \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}e^{-\alpha_{m}}\\ \\ =&\sum_{i=1}^{N} w_i^{(m)} e^{- \alpha_{m}}+ \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)} e^{\alpha_{m}}- \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)} e^{-\alpha_{m}} \\ \\ =&\sum_{i=1}^{N}w_i^{(m)} e^{-\alpha_{m}}+ \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}(e^{\alpha_{m}}-e^{-\alpha_{m}})\tag{1.8} \end{aligned} E====yi=fm(xi)Nwi(m)eαm+yi=fm(xi)Nwi(m)eαmyi=fm(xi)Nwi(m)eαm+yi=fm(xi)Nwi(m)eαmyi=fm(xi)Nwi(m)eαm+yi=fm(xi)Nwi(m)eαmi=1Nwi(m)eαm+yi=fm(xi)Nwi(m)eαmyi=fm(xi)Nwi(m)eαmi=1Nwi(m)eαm+yi=fm(xi)Nwi(m)(eαmeαm)(1.8)
在公式 ( 1.8 ) (1.8) (1.8)中,要使AdaBoost模型分类尽可能的正确,即要找到一个 α m \alpha_{m} αm使得 ∑ y i ≠ f m ( x i ) N w i ( m ) \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)} yi=fm(xi)Nwi(m)项尽可能的小(假设 α m > 0 \alpha_{m}>0 αm>0),因此对 α m \alpha_{m} αm求导有:
∂ E / ∂ α m = − ∑ i = 1 N w i ( m ) e − α m + ∑ y i ≠ f m ( x i ) N w i ( m ) ( e α m + e − α m ) (1.9) \begin{aligned} \partial{E}/\partial{\alpha_{m}}=&-\sum_{i=1}^{N}w_i^{(m)} e^{-\alpha_{m}}+ \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}(e^{\alpha_{m}}+e^{-\alpha_{m}})\tag{1.9} \end{aligned} E/αm=i=1Nwi(m)eαm+yi=fm(xi)Nwi(m)(eαm+eαm)(1.9)
令公式 ( 1.9 ) (1.9) (1.9) 0 0 0
0 = − ∑ i = 1 N w i ( m ) e − α m + ∑ y i ≠ f m ( x i ) N w i ( m ) ( e α m + e − α m ) e − α m ∑ y i = f m ( x i ) N w i ( m ) = e α m ∑ y i ≠ f m ( x i ) N w i ( m ) (1.10) \begin{aligned} 0=-\sum_{i=1}^{N}w_i^{(m)} e^{-\alpha_{m}}+ \sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}(e^{\alpha_{m}}+e^{-\alpha_{m}})\\ e^{-\alpha_{m}} \sum_{y_i=f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)} = e^{\alpha_{m}} \sum_{y_i\neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}\tag{1.10} \end{aligned} 0=i=1Nwi(m)eαm+yi=fm(xi)Nwi(m)(eαm+eαm)eαmyi=fm(xi)Nwi(m)=eαmyi=fm(xi)Nwi(m)(1.10)
由于 e − α m e^{-\alpha_{m}} eαm i i i无关,公式 ( 1.10 ) (1.10) (1.10)左右同时取对数:
− α m + I n ( ∑ y i = f m ( x i ) N w i ( m ) ) = α m + I n ( ∑ y i ≠ f m ( x i ) N w i ( m ) ) 2 α m = I n ( ∑ y i = f m ( x i ) N w i ( m ) ) − I n ( ∑ y i ≠ f m ( x i ) N w i ( m ) ) α m = 1 2 I n ( ∑ y i = f m ( x i ) N w i ( m ) ∑ y i ≠ f m ( x i ) N w i ( m ) ) (1.11) \begin{aligned}\\ -\alpha_{m}+In(\sum_{y_i=f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}) =& \alpha_{m}+In(\sum_{y_i\neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)})\\ 2\alpha_{m} =& In(\sum_{y_i=f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}) - In(\sum_{y_i\neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}) \\ \alpha_{m} =& \frac{1}{2} In(\frac{\sum_{y_i=f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}}{\sum_{y_i\neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}}) \tag{1.11} \end{aligned} αm+In(yi=fm(xi)Nwi(m))=2αm=αm=αm+In(yi=fm(xi)Nwi(m))In(yi=fm(xi)Nwi(m))In(yi=fm(xi)Nwi(m))21In(yi=fm(xi)Nwi(m)yi=fm(xi)Nwi(m))(1.11)
又因 m m m次之后,错误率 ε m \varepsilon_m εm为:
ε m = ∑ y i ≠ f m ( x i ) N w i ( m ) ∑ i = 1 N w i ( m ) (1.12) \begin{aligned} \varepsilon_m=\frac{\sum_{y_i \neq f_{m}(\boldsymbol{x_i})}^{N}w_i^{(m)}}{\sum_{i=1}^{N}w_i^{(m)}} \tag{1.12} \end{aligned} εm=i=1Nwi(m)yi=fm(xi)Nwi(m)(1.12)
所以公式 ( 1.11 ) (1.11) (1.11)
α m = 1 2 I n ( 1 − ε m ε m ) (1.11) \begin{aligned}\\ \alpha_{m} =& \frac{1}{2} In(\frac{1-\varepsilon_m}{\varepsilon_m}) \tag{1.11} \end{aligned} αm=21In(εm1εm)(1.11)
最终,通过更新 F m − 1 F_{m-1} Fm1 F m ( x i ) = F m − 1 ( x i ) + α m f m ( x i ) F_{m}(\boldsymbol{x_i})=F_{m-1}(\boldsymbol{x_i})+\alpha_mf_m(\boldsymbol{x_i}) Fm(xi)=Fm1(xi)+αmfm(xi)即可提升AdaBoost模型的性能。

1.2.5 基本流程

西瓜书174


2. AdaBoost的另一种理解

艾瑞博迪嗨起来!


3. 提升树(Boosting Tree)

其实提升树并没有那么高大上,就是采用了决策树作为上述AdaBoost模型中的弱学习器,而且严格意义上来说,是决策树桩,下面通过一个栗子来说明,基于分类的提升树是怎么构建出来的。

3.1 数据

假定我们有数据集如图1所示。目标:用boosting tree去预测是否有心脏病(绿色列),三个特征(Chest Pain, Blocked Arteries, Patient Weight)。
图3.1 数据情况概览

  1. 给每一个样本同样的权重,表示他们一开始对于分类器是同等重要的。
    w = 1 d a t a s i z e = 1 8 w=\frac{1}{data_size} = \frac{1}{8} w=datasize1=81
  2. 计算不同特征值下正确与错误分类的数量,并计算其基尼系数。
    图3.2 三个决策树桩的计算结果
    由于特征Patient Weight的基尼系数最小,因此,选择该特征所构成的决策树桩作为第一个分类器。

以特征Patient Weight作为决策树桩时,在整个训练集上仅 1 1 1个错误,即 ε 1 = 1 8 \varepsilon_1=\frac{1}{8} ε1=81。根据公式 ( 1.11 ) (1.11) (1.11),可以计算出该分类器的权重为:
α 1 = 1 2 I n ( 1 − ε 1 ε 1 ) = 1 2 I n ( 1 − 1 8 1 8 ) = 0.97 \begin{aligned}\\ \alpha_{1} =& \frac{1}{2} In(\frac{1-\varepsilon_1}{\varepsilon_1})\\ =& \frac{1}{2} In(\frac{1-\frac{1}{8}}{\frac{1}{8}}) \\ =& 0.97 \end{aligned} α1===21In(ε11ε1)21In(81181)0.97

  1. 通过权重重新调整数据分布。
  • 对于错误的样本,增加权重。
    图3.3 第一个分类器错误的样本
    w 3 = 1 8 ∗ e − 0.97 ∗ ( 1 ∗ − 1 ) = 0.33 w_3 = \frac{1}{8} * e^{-0.97*(1*-1)}=0.33 w3=81e0.97(11)=0.33

  • 对于分类正确的样本,减少权重。
    图3.4 第一个分类器正确的样本
    w 0 = w 1 = w 2 = 1 8 ∗ e − 0.97 ∗ ( 1 ∗ 1 ) = 0.05 w_0=w_1=w_2=\frac{1}{8} * e^{-0.97*(1*1)}=0.05 w0=w1=w2=81e0.97(11)=0.05
    w 4 = w 5 = w 6 = w 7 = 1 8 ∗ e − 0.97 ∗ ( − 1 ∗ − 1 ) = 0.05 w_4=w_5=w_6=w_7=\frac{1}{8} * e^{-0.97*(-1*-1)}=0.05 w4=w5=w6=w7=81e0.97(11)=0.05

  • 正则化权重.
    w i = w i ∑ j = 0 7 w j = w i 0.68 w_i=\frac{w_i}{\sum_{j=0}^{7}w_j}=\frac{w_i}{0.68} wi=j=07wjwi=0.68wi
    图3.5 具有新权重的数据集

  1. 创建新的数据分布(要与原数据具有同样的shape)
    此时,将图3.5中的数据当成概率分布。随机选择一个 ( 0 , 1 ) (0,1) (0,1)内的数字 n n n:
  • n 1 ∈ ( 0 , 0.07 ] n_1 \in (0, 0.07] n1(0,0.07],则将第0条数据(Yes, Yes, 205, Yes)添加进新数据集
  • n ∈ ( 0.07 , 0.14 ] n \in (0.07, 0.14] n(0.07,0.14],则将第2条数据(No, Yes, 180, Yes)添加进新数据集
  • n ∈ ( 0.21 , 0.7 ] n \in (0.21, 0.7] n(0.21,0.7],则将第2条数据(Yes, Yes, 167, Yes)添加进新数据集
    … 以此类推

很明显,被第一个分类器分错的数据很入选新数据集的概率极大,可能有多条。假设新数据集是这样的:
图3.6 第一轮结束后新的数据集

跳转步骤1 。直到模型中有指定数量的分类器后结束。


4. 代码

源代码

class AdaBoost(object):
    def __init__(self, n_estimator, weaker_learner, column_type):
        '''
        AdaBoost 模型初始化
        :param n_estimator: 选取n_estimator个弱学习器
        '''
        # 弱学习器的数量
        self.n_estimator = n_estimator
        # 每一列数据的类型(连续/离散)
        self.column_type = column_type
        # 初始化每个学习器权重
        self.alpha = [1] * n_estimator
        # 初始弱学习器数组
        self.weaker_learners = []

        # 初始化样本数据集大小以及特征数量
        self.data_size, self.feature_size = 0, 0

        # 特征的索引值
        self.feature_indices = []

        # 初始化弱学习器
        self.weaker_learner = weaker_learner
        # 初始化训练集的权值分布
        self.w = None

    def __initArgs__(self, _X, _Y):
        '''
        相关参数初始化
        :param _X: 训练集特征值
        :param _Y: 训练集标签值
        :return:
        '''
        self.train_x = _X
        self.train_y = _Y
        self.data_size, self.feature_size = _X.shape
        self.feature_indices = [_ for _ in range(self.feature_size)]

    def getErrorRate(self, true_y, fake_y):
        '''
        计算第ith_estimator个弱学习器的误差
        :param fake_y: 弱学习器的编号
        :return: 弱学习器的错误率
        '''
        aggErrors = np.multiply(np.mat(true_y) != np.mat(fake_y), np.ones(fake_y.shape))
        return aggErrors.sum() / true_y.shape[0]

    def getAlpha(self, error_rate):
        '''
        计算第ith_estimator个弱学习器的权重
        :param error_rate: 错误率
        :return: 弱学习器对应的权重
        '''

        return 0.5 * np.log((1-error_rate)/error_rate)

    def fit(self, _X, _Y):
        '''
        AdaBoost 模型训练
        :param _X: 特征值
        :param _Y: 标签值
        :return:
        '''
        self.__initArgs__(_X, _Y)
        for ith_estimator in range(self.n_estimator):
            print('%d\'s estimator:' % ith_estimator)

            # 初始化分布
            self.w = 1 / self.data_size * np.ones((self.data_size, 1))

            # 新建一个弱学习器
            # 寻找最优的划分节点
            weaker_learner = self.weaker_learner(ith_estimator, self.column_type)

            weaker_learner.fit(_X, _Y)

            weaker_learner_result = weaker_learner.predict(_X)

            self.weaker_learners.append((weaker_learner.__root__.feature_index, weaker_learner))

            # 计算错误率
            error_rate = self.getErrorRate(self.train_y, weaker_learner_result)
            print('error_rate:', error_rate)

            # 计算该弱学习器的权重
            ith_alpha = self.getAlpha(error_rate)
            print('alpha:', ith_alpha)
            self.alpha[ith_estimator] = ith_alpha

            print(self.train_y)
            print(weaker_learner_result)

            # 更新w
            w_tmp = - ith_alpha * np.multiply(self.train_y, weaker_learner_result)
            self.w = np.multiply(self.w, np.exp(w_tmp))
            print('update weights:', self.w)
            # 规范化w
            self.w /= self.w.sum()
            print('normal weights:', self.w)

            # 如果错误率比随机猜还差,那就停止
            if error_rate > 0.5:
                break
            else:
                _X, _Y = self.resampleData()
                print('resample data')
                print(_X)
                print(_Y)

        print('train done')

    def resampleData(self):
        '''
        数据重采样,先计算每个样本需要被抽取的次数,
        然后列索引按照抽取次数从大到小排序(注意是列)
        :return:
        '''
        # 确定每个样本需要抽取的次数

        nums = list(np.multiply(self.w.T[0], self.data_size))

        # 将权重的索引按 权重的大小排序(从大到小)
        idx = list(np.argsort(self.w.T[0]))
        idx.reverse()


        new_index = []
        for id in idx:
            num_arr = (int(nums[id]) + 1) * [id]
            new_index.extend(num_arr)
            if len(new_index) == self.data_size:
                break
        return self.train_x[new_index], self.train_y[new_index]

    def predict(self, X):
        '''
        预测
        :param x: 1*d 维的特征值
        :return: 预测结果
        '''
        print('predict')
        result = []
        for x in X:
            res = 0
            for index, weaker_learner in enumerate(self.weaker_learners):
                res += self.alpha[index] * weaker_learner[1].predict(
                    np.array([x])
                )
            result.append(1 if res > 0 else -1)
        return np.array([result]).T

5. 小结

机器学习中最大的问题在于要面临数据集中维度灾难的问题,一般来说,减少了特征数量之后,虽然计算速度有所提升,但是鬼知道你去掉特征之后模型拟合优度有没有下降。AdaBoost模型不同于SVM和神经网络这两大算法,在AdaBoost模型中,你只要选择你认为有用的特征就好了,只要够小弟(基学习器)够多,啥样的模型都能画出来(当然这种过拟合的模型不要也罢)。

PS:用惯了pandas的行列索引之后,再使用Numpy简直就是个坑。


6. 参考文献

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值