欧拉公式(尤拉公式)

欧拉公式(Euler's formula,又称尤拉公式)是在复分析领域的公式,将三角函数与复数指数函数相关联,因其提出者莱昂哈德·欧拉而得名。欧拉公式提出,对任意实数 ,都存在:

其中  是自然对数的底数, 是虚数单位,而  和  则是余弦、正弦对应的三角函数,参数  则以弧度为单位。这一复数指数函数有时还写作 (cosine plus i sine,余弦加 i 正弦)。由于该公式在  为复数时仍然成立,所以也有人将这一更通用的版本称为欧拉公式。

1> 在复分析领域的欧拉公式为:

  对于任意实数,存在:

  当时,欧拉公式的特殊形式为。

2> 在几何学和代数拓扑学方面,欧拉公式的形式为:

  对于一个拥有个面、个顶角和条棱(边)的单连通多面体,必存在。

  其一般公式为 V+F-E+1=D (点+面-边+1=空间维数)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值