欧拉公式(Euler's formula,又称尤拉公式)是在复分析领域的公式,将三角函数与复数指数函数相关联,因其提出者莱昂哈德·欧拉而得名。欧拉公式提出,对任意实数 ,都存在:
其中 是自然对数的底数, 是虚数单位,而 和 则是余弦、正弦对应的三角函数,参数 则以弧度为单位。这一复数指数函数有时还写作 (cosine plus i sine,余弦加 i 正弦)。由于该公式在 为复数时仍然成立,所以也有人将这一更通用的版本称为欧拉公式。
1> 在复分析领域的欧拉公式为:
对于任意实数,存在:
当时,欧拉公式的特殊形式为。
2> 在几何学和代数拓扑学方面,欧拉公式的形式为:
对于一个拥有个面、个顶角和条棱(边)的单连通多面体,必存在。
其一般公式为 V+F-E+1=D (点+面-边+1=空间维数)。