变分算法-应用

注:本文中所有公式和思路来自于邹博先生的机器学习升级版,我只是为了加深记忆和理解写的本文。


上一篇文章算是比较详细的介绍了变分算法,本篇文章将会介绍一下一些变分框架在其他模型上的应用。


变分贝叶斯:


变分不光可以推测隐变量,还可以估计参数本身,我们可以使用平均场方法,将后验概率写成参数各自分布的乘积,既得到变分贝叶斯(Variational Bayesian, VB) 


高斯分布的变分贝叶斯:


我们使用变分贝叶斯推断一维高斯分布p(μ, σ2 | D)后验概率的参数,用λ来替代σ2的导数,又称λ为精度:


为了方便计算,使用共轭先验的形式:


我们可以看成是混合高斯分布GMM,因为高斯分布的均值的共轭先验分布仍然是高斯分布,方差的共轭先验分布式伽马分布。那么我们可以近似分解成:


目标函数


我们首先给定几个超参数a,b,κ,μ,那么则有:


将这几个分布带入目标函数:


既然得到上边的结果,接下来我们就要进行参数估计了,根据变分的思想,我们估计一个参数,是试用其他参数来进行求期望得到的,那么就先更新μ:


我们可以通过对比高斯分布的对数形式:


计算得到:



接着更新λ:


通过对比Gamma分布对数形式:


得到:


同时:


将结果带入公式,根据:


以及:

得到:


这就是更新过程,公式虽然多一点,都没啥新东西,比较简单。


变分总结


变分既能够推断隐变量,也能推断未知参数,是很有力的参数估计工具。难点在于推导复杂。

相对于采样,变分不容易计算但是效率很高。

平均场方法的变分推导,对离散和连续的隐变量都适用,在平均场方法的框架下,变分推导一次更新一个分布,其本质是坐标上升。

变分除了和贝叶斯结合得到VB,还可以和EM算法结合,得到VBEM,用于带隐变量和未知参数的估计,如GMM、LDA


到此变分算法就全部介绍完了,欢迎批评指正。


  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
三维变分算法是一种基于能量最小化的图像处理算法,常用于图像去噪、图像分割等领域。下面是使用Python实现三维变分算法的基本步骤: 1.导入必要的库 ```python import numpy as np from scipy import sparse from scipy.sparse.linalg import spsolve ``` 2.定义能量函数 三维变分算法的能量函数通常由两部分组成:平滑项和数据项。平滑项用于保持图像的连续性,数据项用于保持图像的特征。其中,平滑项可以用拉普拉斯算子表示,数据项可以根据具体应用选择不同的形式。这里以全变差作为数据项,能够有效去除图像中的噪声。 ```python def energy_function(u, f, alpha, epsilon): x, y, z = u.shape x_range = range(1, x - 1) y_range = range(1, y - 1) z_range = range(1, z - 1) # 平滑项 lap_u = np.zeros((x, y, z)) lap_u[x_range, :, :] += u[x_range - 1, :, :] + u[x_range + 1, :, :] - 2 * u[x_range, :, :] lap_u[:, y_range, :] += u[:, y_range - 1, :] + u[:, y_range + 1, :] - 2 * u[:, y_range, :] lap_u[:, :, z_range] += u[:, :, z_range - 1] + u[:, :, z_range + 1] - 2 * u[:, :, z_range] smooth_term = np.sum(lap_u ** 2) # 数据项 data_term = np.sum((u - f) ** 2) + epsilon ** 2 data_term = np.sqrt(data_term) # 能量函数 energy = 0.5 * alpha * smooth_term + data_term return energy ``` 3.定义更新方程 根据能量函数的梯度,可以得到更新方程。 ```python def update_equation(u, f, alpha, epsilon, lambda_): x, y, z = u.shape x_range = range(1, x - 1) y_range = range(1, y - 1) z_range = range(1, z - 1) # 平滑项 lap_u = np.zeros((x, y, z)) lap_u[x_range, :, :] += u[x_range - 1, :, :] + u[x_range + 1, :, :] - 2 * u[x_range, :, :] lap_u[:, y_range, :] += u[:, y_range - 1, :] + u[:, y_range + 1, :] - 2 * u[:, y_range, :] lap_u[:, :, z_range] += u[:, :, z_range - 1] + u[:, :, z_range + 1] - 2 * u[:, :, z_range] # 数据项 data_term = u - f # 梯度 grad = alpha * 2 * lap_u + lambda_ * data_term / ((data_term ** 2 + epsilon ** 2) ** 0.5) # 更新 u = u - grad # 限制范围 u[u > 1] = 1 u[u < 0] = 0 return u ``` 4.主函数 ```python def main(f, alpha, epsilon, lambda_, num_iterations): u = np.zeros(f.shape) for i in range(num_iterations): u = update_equation(u, f, alpha, epsilon, lambda_) energy = energy_function(u, f, alpha, epsilon) print("Iteration {}: Energy = {}".format(i, energy)) return u ``` 其中,参数f为输入图像,alpha和epsilon为平滑项的系数,lambda_为数据项的系数,num_iterations为迭代次数。 5.调用主函数 ```python if __name__ == '__main__': f = np.random.rand(128, 128, 128) alpha = 1 epsilon = 0.01 lambda_ = 1 num_iterations = 50 u = main(f, alpha, epsilon, lambda_, num_iterations) ``` 以上是使用Python实现三维变分算法的基本步骤,具体实现可以根据具体应用进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值