R-FCN

R-FCN


解决以下两个问题:

  • 图像分类:要求图像具有平移不变性
  • 目标检测:要求图像具有位置敏感性 

R-FCN网络分为以下几个部分:

  • 第一子网络,用于对图像进行卷积的conv,是计算共享特征的。
  • 第二子网络,用来产生候选的boundingbox(模型中使用RPN生成候选boundingbox)。
  • 金字塔池化,使用ROI pooling对第二子网络产生的特征进行池化操作
  • 第三子网络,用来分类和回归box。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥羊汤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值