R-FCN 解决以下两个问题: 图像分类:要求图像具有平移不变性目标检测:要求图像具有位置敏感性 R-FCN网络分为以下几个部分: 第一子网络,用于对图像进行卷积的conv,是计算共享特征的。第二子网络,用来产生候选的boundingbox(模型中使用RPN生成候选boundingbox)。金字塔池化,使用ROI pooling对第二子网络产生的特征进行池化操作第三子网络,用来分类和回归box。