深度学习【注意力机制(Attention)原理和实现】

一 Attention的原理和实现

1. Attention的介绍

在普通的RNN结构中,Encoder需要把一个句子转化为一个向量,然后在Decoder中使用,这就要求Encoder把源句子中所有的信息都包含进去,但是当句子长度过长的时候,这个要求就很难达到,或者说会产生瓶颈(比如,输入一篇文章等长内容),当然可以使用更深的RNN和增加单元数来解决这个问题,但是这样的代价也很大。那么有没有什么方法能够优化现有的RNN结构呢?

为此,Bahdanau等人在2015年提出了Attenion机制,Attention翻译成为中文叫做注意力,把这种模型称为Attention based model。就像我们自己看到一副画,能够很快的说出画的主要内容,而忽略画中的背景,因为我们更关注的往往是其中的主要内容。

通过这种方式,在RNN模型中,有通过LSTM或者是GRU得到的所有信息,那么这些信息中只去关注重点,而不需要在Decoder的每个time step使用全部的encoder的信息,这样就可以解决第一段所说的问题了

Attention机制可以帮助解决这个问题

2. Attenion的实现机制

假设现在有一个文本翻译的需求,即机器学习翻译为machine learning。那么这个过程通过前面所学习的Seq2Seq就可以实现

在这里插入图片描述

上图的左边是Encoder,能够得到hidden_state在右边使用

Deocder中蓝色方框中的内容,是为了提高模型的训练速度而使用teacher forcing手段,否则的话会把前一次的输出作为下一次的输入(但是在Attention模型中不再是这样了

那么整个过程中如果使用Attention应该怎么做呢?

在之前把encoder的最后一个输出,作为decoder的初始的隐藏状态,现在不再这样做

2.1 Attention的实现过程

  1. 初始化一个Decoder的隐藏状态 z 0 z_0 z0

  2. 这个 z o z_o zo会和encoder第一个time step的output进行match操作(或者是socre操作),得到 α 0 1 \alpha_0^1 α01 ,这里的match可以使很多种操作,比如:

    • z和h的余弦值

    • 是一个神经网络,输入为z和h

    • 或者 α = h T W z \alpha = h^T W z α=hTWz

    在这里插入图片描述

  3. encoder中的每个output都和 z 0 z_0 z0进行计算之后,得到的结果进行softmax,让他们的和为1(可以理解为权重)

  4. 之后把所有的softmax之后的结果和原来encoder的输出 h i h_i hi进行相加求和得到 c 0 c^0 c0
    即: c 0 = ∑ α ^ 0 i h i 即: c^0 = \sum\hat{\alpha}_0^ih^i 即:c0=α^0ihi
    在这里插入图片描述

  5. 得到 c 0 c^0 c0之后,把它作为decoder的input,同和传入初始化的 z 0 z^0 z0,得到第一个time step的输出和hidden_state( Z 1 Z^1 Z1

在这里插入图片描述

  1. Z 1 Z_1 Z1再和所有的encoder的output进行match操作,得到的结果进行softmax之后作为权重和encoder的每个timestep的结果相乘求和得到 c 1 c^1 c1

  2. 再把 c 1 c^1 c1作为decoder的input,和 Z 1 Z^1 Z1作为输入得到下一个输出,如此循环,直到最终decoder的output为终止符

    在这里插入图片描述

  3. 上述参考:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLSD15_2.html

  4. 整个过程写成数学公式如下:
    α i j

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OneTenTwo76

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值