植物数据集-全面多种杂草识别的数据集

关键内容

  1. 规模与多样性:包含超过219,770张高分辨率图像,覆盖20种杂草和10种作物。
  2. 图像内容:图像展示了作物和杂草的不同生长阶段、多个视角以及多样的环境条件。
  3. 数据收集:图像采集自不同地理位置、季节和农田,确保了数据集的广泛性和代表性。
  4. 层次分类法:支持细粒度分类,有助于开发更准确和稳健的深度学习模型。
  5. 数据组织:遵循ImageNet风格,方便使用数据加载工具如fmutils或GitHub上的数据加载器。
  6. 挑战:数据集存在类内变化、类间相似性和数据不平衡等挑战。
  7. 性能提升:使用CWD30预训练的主干可以提高模型性能,减少训练时间,节省资源。
  8. CWD30-S:CWD30的扩展,专为语义分割任务设计,提供像素级语义掩码和子类别注释。

CWD30数据集

在这里插入图片描述
在这里插入图片描述

CWD30数据集,专为作物杂草识别任务设计。CWD30包含219,770张高分辨率图像,涵盖20种杂草和10种作物的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值