- 题目:PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
- 来源:CVPR2021
- 机构:香港大学
- 论文:https://arxiv.org/abs/2103.14635
- 代码:https://github.com/CVMI-Lab/PAConv
前言
PAConv,全称为位置自适应卷积(Position Adaptive Convolution),是一种用于处理3D点云数据的通用卷积操作。不同于传统的2D卷积,PAConv通过根据点在三维空间中的位置动态组合卷积核。它的实现依赖于一个称为权重库(Weight Bank)的结构,该结构存储了基本的权重矩阵。这些矩阵通过一个称为ScoreNet的网络动态组合,ScoreNet根据点的位置关系学习如何自适应地组装这些卷积核。
PAConv的关键特点包括:
- 动态卷积核组装:卷积核不是固定的,而是通过根据学习到的与位置相关的系数动态组合权重矩阵生成的。
- 灵活性:相比于传统的2D卷积
订阅专栏 解锁全文

1933

被折叠的 条评论
为什么被折叠?



