【小呆的热力学笔记】热力学第一定律

1. 热力学第一定律不同形式
1.1 热力学第一定律一般形式

对于一般的热力学系统,热力学第一定律可以表述为
加入热力系的能量的总和 − 热力系输出的能量的总和 = 热力系总能量的增量 加入热力系的能量的总和-热力系输出的能量的总和=热力系总能量的增量 加入热力系的能量的总和热力系输出的能量的总和=热力系总能量的增量

( d Q + e 1 d m 1 ) − ( d W t o t + e 2 d m 2 ) = ( E + d E ) − E (1-1) \left(d Q+e_1d m_1\right)-\left(d W_{tot}+e_2d m_2\right)=\left(E+dE\right)-E\tag{1-1} (dQ+e1dm1)(dWtot+e2dm2)=(E+dE)E(1-1)
其中 d Q d Q dQ是单位时间内外界对热力系的加热量, e 1 e_1 e1为每单位质量的能量, d m 1 d m_1 dm1是单位时间内流入热力系的质量, e 2 e_2 e2为每单位质量的能量, d m 2 d m_2 dm2是单位时间内流入热力系的质量, d W t o t d W_{tot} dWtot是单位时间内热力系对外做功,右侧为单位时间内热力系能量的增量,过程如下图所示,加入热力系的能量为 d Q + e 1 d m 1 d Q+e_1d m_1 dQ+e1dm1,流出系统的能量为 d W t o t + e 2 d m 2 d W_{tot}+e_2d m_2 dWtot+e2dm2,系统总能量的增量为 d E dE dE
上式也可以写成
d Q = d E + d W t o t + e 2 d m 2 − e 1 d m 1 (1-2) d Q=dE+d W_{tot}+e_2d m_2-e_1d m_1\tag{1-2} dQ=dE+dWtot+e2dm2e1dm1(1-2)

在这里插入图片描述
如果对式(1-2)进行时间积分,那么有
Q = Δ E + W t o t + ∫ t ( e 2 d m 2 − e 1 d m 1 ) (1-3) Q=\Delta E+W_{tot}+\int_t(e_2d m_2-e_1d m_1)\tag{1-3} Q=ΔE+Wtot+t(e2dm2e1dm1)(1-3)
上式的意义是对热力系的加热量会转变为热力系总能量增量、热力系对外做的功和流入流出热力系的能量三部分。

1.2 闭口系的能量方程

假设有一带活塞的气缸,内装气体,在初始状态下为静置状态,该状态下热力学能为 U 1 U_1 U1,经过加热 Q Q Q,其他膨胀,推动活塞杆对外做功 W W W,最终活塞杆缓慢至静置,此时该状态下热力学能为 U 2 U_2 U2,如下图所示。
在这里插入图片描述
下面我们来分析上述热力学过程,其中明显该系统没有流入质量和流出质量,因此式(1-3)中的积分项为零,同时初始状态和最终状态系统的位能、动能均无变化,因此系统能量的增量就是热力学能的增量,因此该闭口系的能量方程如下所示。
Q = Δ E + W = Δ U + W (1-4) Q=\Delta E+W=\Delta U+W\tag{1-4} Q=ΔE+W=ΔU+W(1-4)

1.3 开口系的能量方程

我们以典型的二冲程发动机为例,讨论开口系的能量方程。二冲程发动机的工作循环见下图,在第一步中,活塞杆和气缸中无气体;进入第二步,在外力作用下,其他通过进气管进入气缸,并推动活塞杆,那么对于热力系来说,外部气体对其作用推动功 p 1 V 1 p_1V_1 p1V1,热力系对活塞杆作用进气功 W 进气 W_{进气} W进气;第三步,发动机气缸内点火,等于对热力系加热量 Q Q Q,热力系此时膨胀推动活塞杆对外做功 W W W;第四步,发动机飞轮推动活塞杆回复行程,飞轮对活塞杆做排气功 W 排气 W_{排气} W排气,将气缸内气体推出气缸,此时热力系对外界做推动功 p 2 V 2 p_2V_2 p2V2
在这里插入图片描述
下面我们来分析上述热力学过程,在整个热力学循环中,第一步到第四步,气缸内均无气体,因此热力系总能均为零,有
Δ E = 0 (1-5) \Delta E=0\tag{1-5} ΔE=0(1-5)
在整个热力学循环中,第一步到第四步,流入流出的能量为
∫ e 2 d m 2 − e 1 d m 1 = U 2 − U 1 + m ⋅ ( 1 2 ( c 2 2 − c 1 2 ) + g ( z 2 − z 1 ) ) (1-6) \int e_2d m_2-e_1d m_1=U_2-U_1+m\cdot\left(\frac{1}{2}(c_2^2-c_1^2)+g(z_2-z_1)\right)\tag{1-6} e2dm2e1dm1=U2U1+m(21(c22c12)+g(z2z1))(1-6)
第一步到第四步,热力系所作的功总和为
W t o t = − p 1 V 1 + W 进气 + W − W 排气 + p 2 V 2 (1-7) W_{tot}=-p_1V_1+W_{进气}+W-W_{排气}+p_2V_2\tag{1-7} Wtot=p1V1+W进气+WW排气+p2V2(1-7)
其中,热力系对外做功为正,外界对热力系做功为负。其中如果进气存在动能和重力势能,那么
W 进气 = p 1 V 1 + 1 2 m c 1 2 + m g Δ z (1-8) W_{进气}=p_1V_1+\frac{1}{2}mc_1^2+mg\Delta z\tag{1-8} W进气=p1V1+21mc12+mgΔz(1-8)
同理排气功如下式
W 排气 = p 2 V 2 + 1 2 m c 2 2 + m g Δ z ’ (1-9) W_{排气}=p_2V_2+\frac{1}{2}mc_2^2+mg\Delta z’\tag{1-9} W排气=p2V2+21mc22+mgΔz(1-9)
W W W为气体膨胀功。将所有上式代入式(1-3),有
Q = U 2 − U 1 + m ⋅ ( 1 2 ( c 2 2 − c 1 2 ) + g ( z 2 − z 1 ) ) − p 1 V 1 + W 进气 + W − W 排气 + p 2 V 2 = H 2 − H 1 + m ⋅ ( 1 2 ( c 2 2 − c 1 2 ) + g ( z 2 − z 1 ) ) + W 进气 + W − W 排气 = H 2 − H 1 + W t = U 2 − U 1 + W (1-10) \begin{aligned} Q&=U_2-U_1+m\cdot\left(\frac{1}{2}(c_2^2-c_1^2)+g(z_2-z_1)\right)-p_1V_1+W_{进气}+W-W_{排气}+p_2V_2\\ &=H_2-H_1+m\cdot\left(\frac{1}{2}(c_2^2-c_1^2)+g(z_2-z_1)\right)+W_{进气}+W-W_{排气}\\ &=H_2-H_1+W_t\\ &=U_2-U_1+W \end{aligned}\tag{1-10} Q=U2U1+m(21(c22c12)+g(z2z1))p1V1+W进气+WW排气+p2V2=H2H1+m(21(c22c12)+g(z2z1))+W进气+WW排气=H2H1+Wt=U2U1+W(1-10)

1.4 稳定流动的能量方程

接下来我们来看稳定流动系统的能量方程,稳定流动的状态如下图所示,其中我们以单位质量流量为单位来讨论,在进口处的流动参数为 p 1 u 1 c 1 z 1 p_1u_1c_1z_1 p1u1c1z1,进口流入单位质量的总能量 e 1 e_1 e1,在出口处的流动参数为 p 1 u 1 c 1 z 1 p_1u_1c_1z_1 p1u1c1z1,出口流出单位质量的总能量 e 2 e_2 e2,系统加热量为 q q q,那么由于系统为稳定流动,因此热力系总能总为 E E E,即有
Δ E = 0 (1-11) \Delta E=0\tag{1-11} ΔE=0(1-11)
在这里插入图片描述
系统流入流出的能量如下所示

∫ e 2 d m 2 − e 1 d m 1 = u 2 − u 1 + 1 2 ( c 2 2 − c 1 2 ) + g ( z 2 − z 1 ) (1-12) \int e_2dm_2-e_1d m_1=u_2-u_1+\frac{1}{2}(c_2^2-c_1^2)+g(z_2-z_1)\tag{1-12} e2dm2e1dm1=u2u1+21(c22c12)+g(z2z1)(1-12)
在进口,外界对热力系做推动功 p 1 v 1 p_1v_1 p1v1,在出口,热力系对外界做推动功 p 2 v 2 p_2v_2 p2v2,热力系做功总和为
w t o t = − p 1 v 1 + W s h + p 2 v 2 (1-13) w_{tot}=-p_1v_1+W_{sh}+p_2v_2\tag{1-13} wtot=p1v1+Wsh+p2v2(1-13)
代入式(1-3),有
q = u 2 − u 1 + 1 2 ( c 2 2 − c 1 2 ) + g ( z 2 − z 1 ) − p 1 v 1 + w s h + p 2 v 2 = h 2 − h 1 + 1 2 ( c 2 2 − c 1 2 ) + g ( z 2 − z 1 ) + w s h = h 2 − h 1 + w t (1-14) \begin{aligned} q&=u_2-u_1+\frac{1}{2}(c_2^2-c_1^2)+g(z_2-z_1)-p_1v_1+w_{sh}+p_2v_2\\ &=h_2-h_1+\frac{1}{2}(c_2^2-c_1^2)+g(z_2-z_1)+w_{sh}\\ &=h_2-h_1+w_t \end{aligned}\tag{1-14} q=u2u1+21(c22c12)+g(z2z1)p1v1+wsh+p2v2=h2h1+21(c22c12)+g(z2z1)+wsh=h2h1+wt(1-14)
同时,按照式(1-10)可以将上式改为
q = h 2 − h 1 + w t = u 2 − u 1 − p 1 v 1 + w t + p 2 v 2 = u 2 − u 1 + w (1-15) q=h_2-h_1+w_t=u_2-u_1-p_1v_1+w_{t}+p_2v_2=u_2-u_1+w\tag{1-15} q=h2h1+wt=u2u1p1v1+wt+p2v2=u2u1+w(1-15)

1.5 讨论

在上面的能量方程建立中,有以下关系成立
q = h 2 − h 1 + w t = u 2 + p 2 V 2 − ( u 1 + p 1 V 1 ) + w t = u 2 − u 1 + p 2 V 2 − p 1 V 1 + w t = u 2 − u 1 + w (1-16) \begin{aligned} q&=h_2-h_1+w_t\\ &=u_2+p_2V_2-(u_1+p_1V_1)+w_t\\ &=u_2-u_1+p_2V_2-p_1V_1+w_t\\ &=u_2-u_1+w \end{aligned}\tag{1-16} q=h2h1+wt=u2+p2V2(u1+p1V1)+wt=u2u1+p2V2p1V1+wt=u2u1+w(1-16)
其意义是膨胀功除了转化为技术功,还有一部分要用以维持流动的推动功。上式的微量形式应用更多,即
d q = d h + d w t d q = d u + d w d w = d w t + d ( p v ) (1-17) \begin{aligned} dq&=dh+dw_t\\ dq&=du+dw\\ dw&=dw_t+d(pv) \end{aligned}\tag{1-17} dqdqdw=dh+dwt=du+dw=dwt+d(pv)(1-17)

1.6 功的计算及其压容图

假设有一个如下的活塞气缸结构,里面装有1个单位质量的气体。对于活塞杆建立平衡方程,如下。
p A = F + F f (1-15) pA=F+F_f\tag{1-15} pA=F+Ff(1-15)
当外界对气体加热,加热量为 d q dq dq,气体膨胀对外做功,如下式
d w = F d x = ( p A − F f ) d x = p d v − F f d x (1-16) dw=Fdx=(pA-F_f)dx=pdv-F_fdx\tag{1-16} dw=Fdx=(pAFf)dx=pdvFfdx(1-16)

在这里插入图片描述
其中第一项是气体膨胀做功,即
w = ∫ p d v (1-17) w=\int pdv\tag{1-17} w=pdv(1-17)
而第二项为摩擦而损失的功。
j将前式代入式(1-17),有
w t = ∫ p d v − ∫ d ( p v ) = − ∫ v d p w_t=\int pdv-\int d(pv)=-\int vdp wt=pdvd(pv)=vdp
以p-v图(压容图,p为压力,v为比体积)为例,气体从状态1到状态2,技术功为曲线与p轴围成的面积,膨胀功为曲线与v轴围成的面积。
在这里插入图片描述
对于一个热力学循环,如下图所示,不难证明此时循环功等于膨胀功,也等于技术功。证明如下所示
w 0 = ∮ p d v = 面积 a b c e f a − 面积 c d a f e c = 面积 a b c d a w 0 = − ∮ v d p = 面积 b c d g h − 面积 d a b h g d = 面积 a b c d a w_0=\oint pdv=面积abcefa-面积cdafec=面积abcda\\ w_0=-\oint vdp=面积bcdgh-面积dabhgd=面积abcda w0=pdv=面积abcefa面积cdafec=面积abcdaw0=vdp=面积bcdgh面积dabhgd=面积abcda
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的骆驼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值