热力学第一定律 等值过程 绝热过程

个人博客:wyxogo.top

热力学第一定律

内能,功和热量

  • 实际气体内能:所有热分子热运动的动能和分子势能的总和

  • 内能是状态量: E = E ( T , V ) E=E(T,V) E=E(T,V)

    理想气体内能: E = M M m o l i 2 R T E={\frac{M}{M_{mol}}{\frac{i}{2}}RT} E=MmolM2iRT

    是状态参量T的单值函数

  • 系统内能改变的两种方式

  1. 做工可以改变系统的状态:摩擦升温(机械功),电加热(电功)
  2. 热量的传递可以改变系统的内能:热量是过程量

准静态过程

热 力 学 过 程 = { 准 静 态 过 程 非 静 态 过 程 热力学过程 = \left\{ \begin{array}{lr} 准静态过程\\ 非静态过程 \end{array} \right. ={

  • 准静态过程:系统从一个平衡态到另一个平衡态,如果过程中所有的中间态都可以近似的看作平衡态法过程
  • 准静态过程是理想化过程

平衡态
弛豫时间 τ \tau τ: 系统从一个平衡态变道相邻平衡态所经过的时间

Δ t 过 程 > > τ \Delta t_{过程}>>\tau Δt>>τ: 过程就可以视为准静态过程,故无限缓慢只是一个相对的概念。

非静态过程: 系统从一平衡态到另一平衡态,过程中所有中间态为非静态的过程

  • 准静态过程曲线

准静态过程曲线

p-V图上,一个点代表一个平衡态,一条连续的曲线代表一个准静态过程

准静态过程的功与热

体积功:

当活塞移动微小位移 d l dl dl时,系统外界所做的元功为:

d A = F d l = p S d l = p d V dA = Fdl = pSdl = pdV dA=Fdl=pSdl=pdV

A = ∫ V 1 V 2 p d V A=\begin{aligned} \int_{V_{1}}^{V_{2}} p \mathrm{d} V \end{aligned} A=V1V2pdV

d V > 0 , d A > 0 dV>0,dA>0 dV>0,dA>0系统对外界做正功
d V < 0 , d A < 0 dV<0,dA<0 dV<0,dA<0系统对外界做负功
d V = 0 , d A = 0 dV=0,dA=0 dV=0,dA=0系统不做功

  • 功是过程量
  • 做功改变系统热力学状态的微观实质

-功是系统与外界交换的能量的量度

准静态过程中的热量计算

C = d Q d T C = \frac{dQ}{dT} C=dTdQ

C(热容量):系统在某一无限小过程中吸收热量 d Q dQ dQ与温度变化 d T dT dT的比值
单位: J ⋅ K − 1 J\cdot K^{-1} JK1
热容量与比热的关系为: C = M c 比 C = Mc_{比} C=Mc
C m C_m Cm(摩尔热容量):
C = M M m o l C m C = {\frac{M}{M_{mol}}}{C_{m}} C=MmolMCm

d Q = M M m o l C m d T dQ = {\frac{M}{M_{mol}}}{C_m}{dT} dQ=MmolMCmdT

Q = M M m o l C m ( T 2 − T 1 ) Q = {\frac{M}{M_{mol}}}{C_m}(T_2-T_1) Q=MmolMCm(T2T1)

  • 传热的微观本质:

  • 热量也是能量变化的量度

热力学第一定律

对于任一过程,系统与外界可能同时有功和热量的转换,且系统能量改变仅为内能时,根据能量守恒:
Δ E = Q + ( − A ) \Delta E= Q + (-A) ΔE=Q+(A)

Q = Δ E + A Q = \Delta E + A Q=ΔE+A

  • Q > 0 Q>0 Q>0系统吸热, Q < 0 Q<0 Q<0系统放热

  • A > 0 A>0 A>0系统对外做功, A < 0 A<0 A<0外界对系统做功

  • Δ E > 0 \Delta E> 0 ΔE>0系统内能增加, Δ E < 0 \Delta E<0 ΔE<0系统内能减少

  • 如果系统经历一些微小变化过程,则 d Q = d E + d A dQ=dE+dA dQ=dE+dA

  • 对准静态过程:

d Q = d E + p d V dQ=dE+pdV dQ=dE+pdV

Q = Δ E + ∫ V 1 V 2 p d V Q=\Delta E + {\begin{aligned}{\int_{V_{1}}^{V_{2}}}p{\mathrm{d} V}\end{aligned}} Q=ΔE+V1V2pdV

理想气体等值过程

等容过程,定容摩尔热容

∵ d V = 0 , d A = p d V = 0 \because dV=0,dA= pdV = 0 dV=0,dA=pdV=0
∴ d Q = d E = M M m o l i 2 R d T \therefore dQ=dE={\frac{M}{M_{mol}}}{\frac{i}{2}}RdT dQ=dE=MmolM2iRdT
Q V = E 2 − E 1 = M M m o l i 2 R d ( T 2 − T 1 ) Q_V=E_2-E_1={\frac{M}{M_{mol}}}{\frac{i}{2}}Rd(T_2-T_1) QV=E2E1=MmolM2iRd(T2T1)

定容摩尔热容量
d Q V = d E = i 2 R d T dQ_V=dE={\frac{i}{2}}RdT dQV=dE=2iRdT
C V = ( d Q d T ) V C_V=({\frac {dQ}{dT}})_V CV=(dTdQ)V
C V , m = i 2 R C_{V,m}={\frac{i}{2}}R CV,m=2iR

  • 单原子理想气体: C V , m = 3 2 R C_{V,m}={\frac{3}{2}}R CV,m=23R
  • 双原子理想气体: C V , m = 5 2 R C_{V,m}={\frac{5}{2}}R CV,m=25R
  • 多原子理想气体: C V , m = 3 R C_{V,m}=3R CV,m=3R

理想气体内能
E = M M m o l C V , m T E={\frac{M}{M_{mol}}}{C_{V,m}}T E=MmolMCV,mT
理想气体的任一 T 1 → T 2 T_1\rightarrow T_2 T1T2过程
d E = ν C V , m d T dE=\nu C_{V,m}dT dE=νCV,mdT
Δ E = E 2 − E 1 = ν ∫ T 1 T 2 C V , m d T \Delta E=E_2-E_1={\nu}{\begin{aligned}{\int_{T_{1}}^{T_{2}}}{C_{V,m}}{\mathrm{d} T}\end{aligned}} ΔE=E2E1=νT1T2CV,mdT
C V , m C_{V,m} CV,m近似为常数,则有 Δ E = ν C V , m Δ T \Delta E = \nu C_{V,m}\Delta T ΔE=νCV,mΔT

等压过程,定压摩尔热容

d A = p d V dA=pdV dA=pdV
d Q p = d E + p d V dQ_p=dE+pdV dQp=dE+pdV
A p = ∫ V 1 V 2 p d V = p ( V 2 − V 1 ) A_p={\begin{aligned}{\int_{V_{1}}^{V_{2}}}p{\mathrm{d} V}\end{aligned}}=p(V_2-V_1) Ap=V1V2pdV=p(V2V1)
Q p = M M m o l i 2 R ( T 2 − T 1 ) + M M m o l R ( T 2 − T 1 ) Q_p={\frac{M}{M_{mol}}}{\frac{i}{2}}R(T_2-T_1)+{\frac{M}{M_{mol}}}R(T_2-T_1) Qp=MmolM2iR(T2T1)+MmolMR(T2T1)


定压摩尔热容量
d Q p = d E + d A p = C V , m d T + p d V dQ_p=dE+dA_p=C_{V,m}dT+pdV dQp=dE+dAp=CV,mdT+pdV
p V = R T 微 分 得 p d V = R d T pV=RT微分得pdV=RdT pV=RTpdV=RdT
d Q p = i 2 R ⋅ d T + R ⋅ d T dQ_p={\frac{i}{2}}R\cdot dT+R\cdot dT dQp=2iRdT+RdT
C p , m = ( d Q d T ) p C_{p,m}=(\frac{dQ}{dT})_p Cp,m=(dTdQ)p
C p , m = i 2 R + R C_{p,m}={\frac{i}{2}}R+R Cp,m=2iR+R
C p , m = C V , m + R C_{p,m}=C_{V,m}+R Cp,m=CV,m+R
Q p , m = M M m o l C p , m ( T 2 − T 1 ) Q_{p,m}={\frac{M}{M_{mol}}}{C_{p,m}}(T_2-T_1) Qp,m=MmolMCp,m(T2T1)
比热容比: γ = C p , m C V , m \gamma =\frac{C_{p,m}}{C_{V,m}} γ=CV,mCp,m为绝热系数
理想气体: γ = C p , m C V , m = i 2 R + R i 2 R = i + 2 i \gamma =\frac{C_{p,m}}{C_{V,m}}=\frac{{\frac{i}{2}}R+R}{{\frac{i}{2}}R}=\frac{i+2}{i} γ=CV,mCp,m=2iR2iR+R=ii+2

  • 对单原子分子: i = 3 , γ = 1.67 i=3,\gamma=1.67 i=3,γ=1.67
  • 对刚性双原子分子: i = 5 , γ = 1.40 i=5,\gamma=1.40 i=5,γ=1.40
  • 对刚性多原子分子: i = 6 , γ = 1.33 i=6,\gamma=1.33 i=6,γ=1.33

等温过程

d T = 0 , d E = 0 dT=0,dE=0 dT=0,dE=0

d Q T = d A T dQ_T=dA_T dQT=dAT

d Q T = p d V , p = ν R T ⋅ 1 V dQ_T=pdV,p=\nu RT\cdot \frac{1}{V} dQT=pdV,p=νRTV1

Q T = A T = ∫ V 1 V 2 ν R T d V V = ν R T l n V 2 V 1 = p 1 V 1 l n V 2 V 1 Q_T=A_T={\begin{aligned}{\int_{V_{1}}^{V_{2}}}\nu RT{\frac{dV}{V}}\end{aligned}}=\nu RTln{\frac{V_2}{V_1}}=p_1 V_1 ln{\frac{V_2}{V_1}} QT=AT=V1V2νRTVdV=νRTlnV1V2=p1V1lnV1V2

⇒ Q T = { p 1 V 1 l n p 1 p 2 = p 2 V 2 l n p 1 p 2 M M m o l R T l n p 1 p 2 \Rightarrow Q_T = \left\{\begin{array}{lr}p_1 V_1 ln{\frac{p_1}{p_2}}=p_2 V_2 ln{\frac{p_1}{p_2}}\\\frac{M}{M_{mol}}RTln{\frac{p_1}{p_2}}\end{array}\right. QT={p1V1lnp2p1=p2V2lnp2p1MmolMRTlnp2p1

绝热过程

系统变化过程中,系统与外界没有热交换

  • 特征: d Q = 0 , d E + d A = 0 dQ=0,dE+dA=0 dQ=0,dE+dA=0
绝热方程
  • 对于准静态方程
    ν C V , m d T + p d V = 0 \nu C_{V,m}dT+pdV=0 νCV,mdT+pdV=0

    p V = ν R T pV=\nu RT pV=νRT

    取微分得

    p d V + V d p = ν R d T pdV+Vdp=\nu RdT pdV+Vdp=νRdT

    消去 ν d T \nu dT νdT

    p d V + V d p = − R p d V C V , m pdV+Vdp=-R{\frac{pdV}{C_{V,m}}} pdV+Vdp=RCV,mpdV

    C V , m p d V + C V , m V d p = − R p d V {C_{V,m}}pdV+{C_{V,m}}Vdp=-RpdV CV,mpdV+CV,mVdp=RpdV

    C p , m p d V + C V , m V d p = 0 {C_{p,m}}pdV+{C_{V,m}}Vdp=0 Cp,mpdV+CV,mVdp=0

    d p p + γ d V V = 0 {\frac{dp}{p}}+\gamma {\frac{dV}{V}}=0 pdp+γVdV=0

    积分得

    ∫ d p p + ∫ γ d V V = 0 {\begin{aligned}\int \frac{dp}{p}\end{aligned}}+{\begin{aligned}\int \gamma \frac{dV}{V}\end{aligned}}=0 pdp+γVdV=0

    l n p + γ l n V = C lnp+\gamma lnV=C lnp+γlnV=C

    l n p V γ = C lnpV^\gamma=C lnpVγ=C
    p V γ = C 1 pV^\gamma=C_1 pVγ=C1
    p V γ − 1 = C 2 pV^{\gamma-1}=C_2 pVγ1=C2
    p γ − 1 T − γ = C 3 p^{\gamma-1}T^{-\gamma}=C_3 pγ1Tγ=C3,即松柏方程

绝热线与等温线

p V = C 1 , 等 温 线 pV=C_1,等温线 pV=C1,线

p V γ = C 2 , 绝 热 线 pV^\gamma=C_2,绝热线 pVγ=C2,线

  • 对于等温过程

    p V = C 1 = p A V A pV=C_1=p_A V_A pV=C1=pAVA

    p = C 1 V p=\frac{C_1}{V} p=VC1

    d p d V ∣ A T = − C 1 V 2 ∣ A = − C 1 V A 2 = − p A V A V A 2 = − p A V A \frac{dp}{dV}|_{AT}=-\frac{C_1}{V^2}|_A=-\frac{C_1}{V_A ^2}=-\frac{p_AV_A}{V_A ^2}=-\frac{p_A}{V_A} dVdpAT=V2C1A=VA2C1=VA2pAVA=VApA

  • 对于绝热过程

    p V γ = C 2 = p A V A γ pV^\gamma=C_2=p_AV_A ^\gamma pVγ=C2=pAVAγ

    p = C 2 V γ p=\frac{C_2}{V^\gamma} p=VγC2

    d p d V ∣ A γ = − γ C 2 V γ + 1 ∣ A = − γ p A V A γ V A γ + 1 = − γ p A V A \frac{dp}{dV}|_{A\gamma}=-\gamma \frac{C_2}{V^{\gamma+1}}|_A=-\gamma \frac{p_AV_A ^\gamma}{V_A ^{\gamma+1}}=-\gamma \frac{p_A}{V_A} dVdpAγ=γVγ+1C2A=γVAγ+1pAVAγ=γVApA

    ∵ γ > 1 \because \gamma > 1 γ>1

    ∴ ∣ d p d V ∣ A γ = γ p A V A > ∣ d p d V ∣ A T = p A V A \therefore |\frac{dp}{dV}|_{A\gamma}=\gamma \frac{p_A}{V_A}>|\frac{dp}{dV}|_{AT}=\frac{p_A}{V_A} dVdpAγ=γVApA>dVdpAT=VApA

    即绝热线要陡一些

p = n k T p=nkT p=nkT

绝热过程中功值计算

  • 7
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值