Fat-Tree Topo Architecture(胖树拓扑结构)

背景

最近在搜索关于Fat-Tree的相关资料时,发现网上内容比较少,很多博客是相互转载的,拓扑结构图也加载不出来,使得对Fat-Tree的理解过于抽象。

实践

传统数据中心采用多层级的树形结构,这种结构针对客户端/服务器(C/S)模式能有较好的效果。树形结构包括单根树和多根树。多根数的根节点往往作为备份节点存在(我们以方格代表交换机)。
传统单根拓扑和多根拓扑
传统单根/多根拓扑结构有以下缺点:成本高,根部交换机必须要有足够大的带宽来满足下层服务器之间的通信;性能瓶颈,无法满足数据中心内部大规模的MapReduce和数据拷贝。

为了解决树形结构根节点的瓶颈问题,研究者提出了许多可用的拓扑结构。分为以交换机为中心和以服务器为中心的架构。其中,Fat-Tree在近年来的科研中应用较为广泛。SIGCOMM会议论文:Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network architecture

Fat-Tree Topo Architecture

Fat-Tree是以交换机为中心的拓扑。支持在横向拓展的同时拓展路径数目;且所有交换机均为相同端口数量的普通设备,降低了网络建设成本。

Fat-Tree结构共分为三层:核心层、汇聚层、接入层。一个k元的Fat-Tree可以归纳为5个特征:

  • 每台交换机都有k个端口;
  • 核心层为顶层,一共有(k/2)^2个交换机;
  • 一共有k个pod,每个pod有k台交换机组成。其中汇聚层和接入层各占k/2台交换机;
  • 接入层每个交换机可以容纳k/2台服务器,因此,k元Fat-Tree一共有k个pod,每个pod容纳k*k/4个服务器,所有pod共能容纳k*k*k/4台服务器;
  • 任意两个pod之间存在k条路径。

常见的有2元、4元、6元等结构。
在这里插入图片描述

在这里插入图片描述

以下是一个简单的 Python 程序,用于生成 k=4 的 Fat-Tree 拓扑结构。程序使用 NetworkX 库来创建和可视化网络拓扑。 ```python import networkx as nx import matplotlib.pyplot as plt k = 4 # Fat-Tree 参数 # 创建网络拓扑 G = nx.Graph() # 生成 Aggregation 层节点 agg_nodes = [] for i in range(k**2): agg_nodes.append('Agg-' + str(i)) G.add_node(agg_nodes[-1], layer='Aggregation') # 生成 Edge 层节点 edge_nodes = [] for i in range(k**2 * k // 2): edge_nodes.append('Edge-' + str(i)) G.add_node(edge_nodes[-1], layer='Edge') # 生成 Host 层节点 host_nodes = [] for i in range(k**3 // 2): host_nodes.append('Host-' + str(i)) G.add_node(host_nodes[-1], layer='Host') # 生成 Aggregation 层与 Edge 层之间的连接 for i in range(k**2): for j in range(i * k // 2, (i + 1) * k // 2): for l in range(k**2 + j * k // 2, k**2 + (j + 1) * k // 2): G.add_edge(agg_nodes[i], edge_nodes[l]) # 生成 Edge 层与 Host 层之间的连接 for i in range(k**2 * k // 2): for j in range(k // 2): G.add_edge(edge_nodes[i], host_nodes[i * k // 2 + j]) # 绘制网络拓扑图 pos = nx.spring_layout(G, seed=42) node_color = {'Aggregation': 'blue', 'Edge': 'green', 'Host': 'red'} node_size = {'Aggregation': 500, 'Edge': 300, 'Host': 100} for layer in ['Aggregation', 'Edge', 'Host']: nodes = [node for node in G.nodes() if G.nodes[node]['layer'] == layer] nx.draw_networkx_nodes(G, pos, nodelist=nodes, node_color=node_color[layer], node_size=[node_size[layer]] * len(nodes)) nx.draw_networkx_edges(G, pos) plt.axis('off') plt.show() ``` 程序运行时,将生成一个 k=4 的 Fat-Tree 拓扑结构,并显示在一个 matplotlib 窗口中。可以根据需要修改参数 k 来生成不同大小的 Fat-Tree 拓扑。 参考资料: - NetworkX documentation: https://networkx.github.io/documentation/stable/index.html - Fat tree topology: https://en.wikipedia.org/wiki/Fat_tree_topology
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值