最优化方法Python计算:一元函数导数的数值计算

定义1 给定连续函数 f ( x ) f(x) f(x) x ∈ Ω ⊆ R x\in\Omega\subseteq\text{ℝ} xΩR。设 x , x 1 ∈ Ω x,x_1\in\Omega x,x1Ω
Δ x = x − x 1 \Delta x=x-x_1 Δx=xx1
称为变量 x x x差分。此时, x = x 1 + Δ x x=x_1+\Delta x x=x1+Δx。称
f ( x 1 + Δ x ) − f ( x 1 ) Δ x \frac{f(x_1+\Delta x)-f(x_1)}{\Delta x} Δxf(x1+Δx)f(x1)
f ( x ) f(x) f(x) x 1 x_1 x1处的前向差分。称
f ( x 1 ) − f ( x 1 − Δ x ) Δ x \frac{f(x_1)-f(x_1-\Delta x)}{\Delta x} Δxf(x1)f(x1Δx)
f ( x ) f(x) f(x) x 1 x_1 x1处的后向差分。称
f ( x 1 + Δ x / 2 ) − f ( x 1 − Δ x / 2 ) Δ x \frac{f(x_1+\Delta x/2)-f(x_1-\Delta x/2)}{\Delta x} Δxf(x1+Δx/2)f(x1Δx/2)
f ( x ) f(x) f(x) x 1 x_1 x1处的中心差分
若函数 f ( x ) f(x) f(x) x 1 x_1 x1处可微,则 f ( x ) f(x) f(x) x 1 x_1 x1处的导数为
f ′ ( x 1 ) = lim ⁡ Δ x → 0 f ( x ) − f ( x 1 ) Δ x = lim ⁡ Δ x → 0 f ( x 1 + Δ x ) − f ( x 1 ) Δ x f'(x_1)=\lim_{\Delta x\rightarrow0}\frac{f(x)-f(x_1)}{\Delta x}=\lim_{\Delta x\rightarrow0}\frac{f(x_1+\Delta x)-f(x_1)}{\Delta x} f(x1)=Δx0limΔxf(x)f(x1)=Δx0limΔxf(x1+Δx)f(x1)
f ( x ) f(x) f(x) x 1 x_1 x1处的导数 f ′ ( x 1 ) f'(x_1) f(x1) f ( x ) f(x) f(x) x 1 x_1 x1处的前向差分 f ( x 1 + Δ x ) − f ( x 1 ) Δ x \frac{f(x_1+\Delta x)-f(x_1)}{\Delta x} Δxf(x1+Δx)f(x1) x x x的差分 Δ x \Delta x Δx趋于0时的极限。因此,当 ∣ Δ x ∣ |\Delta x| ∣Δx充分小时,
f ′ ( x 1 ) ≈ f ( x 1 ) − f ( x 1 − Δ x ) Δ x . f'(x_1)\approx \frac{f(x_1)-f(x_1-\Delta x)}{\Delta x}. f(x1)Δxf(x1)f(x1Δx).
f ( x ) f(x) f(x) x 1 x_1 x1处的后向差分 f ( x 1 ) − f ( x 1 − Δ x ) Δ x \frac{f(x_1)-f(x_1-\Delta x)}{\Delta x} Δxf(x1)f(x1Δx)中对变量差分 Δ x \Delta x Δx作变换 Δ x ′ = − Δ x \Delta x'=-\Delta x Δx=Δx,得
f ( x 1 ) − f ( x 1 − Δ x ) Δ x = f ( x 1 ) − f ( x 1 + Δ ′ x ) − Δ x ′ = f ( x 1 + Δ x ′ ) − f ( x 1 ) Δ x ′ \frac{f(x_1)-f(x_1-\Delta x)}{\Delta x}=\frac{f(x_1)-f(x_1+\Delta'x)}{-\Delta x'}=\frac{f(x_1+\Delta x')-f(x_1)}{\Delta x'} Δxf(x1)f(x1Δx)=Δxf(x1)f(x1+Δx)=Δxf(x1+Δx)f(x1)
由于 Δ x ′ → 0 \Delta x'\rightarrow0 Δx0当且进当 Δ x → 0 \Delta x\rightarrow0 Δx0,故当 ∣ Δ x ∣ |\Delta x| ∣Δx充分小时,有
f ′ ( x 1 ) ≈ f ( x 1 ) − f ( x 1 − Δ x ) Δ x . f'(x_1)\approx\frac{f(x_1)-f(x_1-\Delta x)}{\Delta x}. f(x1)Δxf(x1)f(x1Δx).
对于 f ( x ) f(x) f(x) x 1 x_1 x1处的中心差分
f ( x 1 + Δ x / 2 ) − f ( x 1 − Δ x / 2 ) Δ x = f ( x 1 + Δ x / 2 ) − f ( x 1 ) + f ( x 1 ) − f ( x 1 − Δ x / 2 ) Δ x = 1 2 f ( x 1 + Δ x / 2 ) − f ( x 1 ) + f ( x 1 ) − f ( x 1 − Δ x / 2 ) Δ x / 2 = 1 2 [ f ( x 1 + Δ x / 2 ) − f ( x 1 ) Δ x / 2 + f ( x 1 ) − f ( x 1 − Δ x / 2 ) Δ x / 2 ] \frac{f(x_1+\Delta x/2)-f(x_1-\Delta x/2)}{\Delta x}=\frac{f(x_1+\Delta x/2)-f(x_1)+f(x_1)-f(x_1-\Delta x/2)}{\Delta x}\\ =\frac{1}{2}\frac{f(x_1+\Delta x/2)-f(x_1)+f(x_1)-f(x_1-\Delta x/2)}{\Delta x/2}\\ =\frac{1}{2}\left[\frac{f(x_1+\Delta x/2)-f(x_1)}{\Delta x/2}+\frac{f(x_1)-f(x_1-\Delta x/2)}{\Delta x/2}\right] Δxf(x1+Δx/2)f(x1Δx/2)=Δxf(x1+Δx/2)f(x1)+f(x1)f(x1Δx/2)=21Δx/2f(x1+Δx/2)f(x1)+f(x1)f(x1Δx/2)=21[Δx/2f(x1+Δx/2)f(x1)+Δx/2f(x1)f(x1Δx/2)]
所以
f ′ ( x 1 ) ≈ f ( x 1 + Δ x / 2 ) − f ( x 1 − Δ x / 2 ) Δ x . f'(x_1)\approx\frac{f(x_1+\Delta x/2)-f(x_1-\Delta x/2)}{\Delta x}. f(x1)Δxf(x1+Δx/2)f(x1Δx/2).

g ( x ) = f ( x + Δ x / 2 ) − f ( x − Δ x / 2 ) Δ x g(x)=\frac{f(x+\Delta x/2)-f(x-\Delta x/2)}{\Delta x} g(x)=Δxf(x+Δx/2)f(xΔx/2)
称其为 f ( x ) f(x) f(x)广义导数。对 f ( x ) f(x) f(x)的广义导数 g ( x ) g(x) g(x)计算其在 x 1 x_1 x1处的中心差分,可得 f ( x ) f(x) f(x) x 1 x_1 x1处的二阶导数近似计算公式
f ′ ′ ( x 1 ) ≈ f ( x 1 + Δ x ) + f ( x 1 − Δ x ) − 2 f ( x 1 ) Δ x 2 . f''(x_1)\approx\frac{f(x_1+\Delta x)+f(x_1-\Delta x)-2f(x_1)}{\Delta x^2}. f′′(x1)Δx2f(x1+Δx)+f(x1Δx)2f(x1).
利用 f ′ ( x 1 ) f'(x_1) f(x1) f " ( x 1 ) f"(x_1) f"(x1)的近似公式,实现一元函数二阶可微的一、二阶导数计算的Python函数定义如下

def der_scalar(f,x1):						#f表示函数,x1表示自变量值
   dx=1e-7									#设置Δx=0.0000001
   f1=(f(x1+dx/2)-f(x1-dx/2))/dx			#计算一阶导数
   f2=(f(x1+dx)+f(x1-dx)-2*f(x1))/dx**2		#计算二阶导数
   return f1,f2

程序中第1~5定义函数der_scalar。两个参数之一f表示二阶可微函数 f ( x ) f(x) f(x),x1表示自变量值 x 1 x_1 x1。第2行设置自变量增量 Δ x = 1 0 − 7 \Delta x=10^{-7} Δx=107为dx。第3行按 f ′ ( x 1 ) f'(x_1) f(x1)的中心差分近似式计算 x 1 x_1 x1处的一阶导数 f ′ ( x 1 ) f'(x_1) f(x1)为f1。第4行按广义导数的中心差分计算 x 1 x_1 x1处的二阶导数 f ′ ′ ( x 1 ) f''(x_1) f′′(x1)为f2。
例1 考虑函数 f ( x ) = sin ⁡ x 2 f(x)=\sin{x^2} f(x)=sinx2,其一阶导数 f ′ ( x ) = 2 x cos ⁡ x 2 f'(x)=2x\cos{x^2} f(x)=2xcosx2,二阶导数 f ′ ′ ( x ) = 2 ( cos ⁡ x 2 − 2 x 2 sin ⁡ x 2 ) f''(x)=2(\cos{x^2}-2x^2\sin{x^2}) f′′(x)=2(cosx22x2sinx2)。故对 x 1 = π 3 x_1=\frac{\pi}{3} x1=3π可算得 f ′ ( x 1 ) = 0.9563 f'(x_1)=0.9563 f(x1)=0.9563 f ′ ′ ( x 1 ) = − 2.9893 f''(x_1)=-2.9893 f′′(x1)=2.9893。下列代码比较直接由导函数解析式计算和调用上列程序定义的der_scalar函数计算的结果。

import numpy as np									#导入numpy
f=lambda x:np.sin(x**2)								#设置函数f(x)
f1=lambda x:2*x*np.cos(x**2)						#设置一阶导数f'(x)
f2=lambda x:2*(np.cos(x**2)-2*np.sin(x**2)*x**2)	#设置二阶导数f"(x)
x1=np.pi/3											#设置自变量x1
print((f1(x1),f2(x1)))								#解析计算
print(der_scalar(f,x1))								#数值计算

程序的2、3、4行分别设置 f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x) f ′ ′ ( x ) f''(x) f′′(x)的解析式。第5行设置自变量的值 x 1 = π 3 x_1=\frac{\pi}{3} x1=3π。第6行输出解析计算结果,第7行调用der_scalar函数数值地计算 f ′ ( x 1 ) f'(x_1) f(x1) f ′ ′ ( x 1 ) f''(x_1) f′′(x1)。运行程序,输出

(0.9563079109495481, -2.9893240816612874)
(0.9563079098976839, -3.0000693287648676)

输出的第1行为解析计算的结果,第2行为数值计算结果。比较两者可见der_scalar函数计算的一阶导数结果精度是很高的,二阶导数的计算精度稍差。这是因为,这是对“广义导数”进行差分计算的结果。换句话说,在计算二阶导数时,累积了两次计算误差,产生了误差的“放大”效应。尽管如此,der_scalar函数在大多数场合都能满足应用的要求。
例2: 下图给出了移动无线通信系统的简化模型。有两个同为 1 1 1个高度单位相矩 2 2 2个长度单位的相邻基站,手机用户所处位置为 x x x,手机收到的基站信号的功率与用户与基站之间的距离平方成反比。试确定用户最为合适的位置,使得信号干扰比最大,即用户接收到来自基站 1 1 1的信号功率与来自基站 2 2 2的信号功率之间的比值最大。
请添加图片描述
:按题意,手机收到的基站信号的功率与用户与基站之间的距离平方成反比。即收到基站1和基站2的功率分别为
w 1 = 1 1 + x 2 w 2 = 1 1 + ( 2 − x ) 2 \begin{array}{l} w_1=\frac{1}{1+x^2}\\ w_2=\frac{1}{1+(2-x)^2} \end{array} w1=1+x21w2=1+(2x)21
为使得信号干扰比最大,即用户接收到来自基站1的信号功率与来自基站2的信号功率之间的比值最大,求函数 f ( x ) = w 1 w 2 = 1 + ( 2 − x ) 2 1 + x 2 f(x)=\frac{w_1}{w_2}=\frac{1+(2-x)^2}{1+x^2} f(x)=w2w1=1+x21+(2x)2的最大值点 x 0 x_0 x0
由于 f ( x ) f(x) f(x)二阶连续可微,为计算 f ( x ) f(x) f(x)的最大值点,先求得 f ( x ) f(x) f(x)驻点。
f ′ ( x ) = − 2 ( 2 − x ) ( 1 + x 2 ) − 2 x ( 1 + ( 2 − x ) 2 ) ( 1 + x 2 ) 2 = 4 ( x 2 − 2 x − 1 ) ( 1 + x 2 ) 2 = 4 ( ( x − 1 ) 2 − 2 ) ( 1 + x 2 ) 2 = 4 ( ( x − 1 − 2 ) ( x − 1 + 2 ) ) ( 1 + x 2 ) 2 f'(x)=\frac{-2(2-x)(1+x^2)-2x(1+(2-x)^2)}{(1+x^2)^2}\\ =\frac{4(x^2-2x-1)}{(1+x^2)^2}=\frac{4((x-1)^2-2)}{(1+x^2)^2}\\ =\frac{4((x-1-\sqrt{2})(x-1+\sqrt{2}))}{(1+x^2)^2} f(x)=(1+x2)22(2x)(1+x2)2x(1+(2x)2)=(1+x2)24(x22x1)=(1+x2)24((x1)22)=(1+x2)24((x12 )(x1+2 ))
f ′ ( x ) = 0 f'(x)=0 f(x)=0,即得驻点 x 1 = 1 − 2 x_1=1-\sqrt{2} x1=12 x 2 = 1 + 2 x_2=1+\sqrt{2} x2=1+2 。按二阶可微函数极值点的必要条件,需计算 f ( x ) f(x) f(x)的二阶导数 f ′ ′ ( x ) f''(x) f′′(x)在驻点处的值,通过二阶导数值的正负以判断是极大值点或是极小值点。下列代码完成计算过程。

import numpy as np					#导入numpy
f=lambda x:(1+(2-x)**2)/(1+x**2)	#设置函数f(x)
x1=1-np.sqrt(2)						#驻点x1
x2=1+np.sqrt(2)						#驻点x2
print('%.1f,%.4f'%der_scalar(f,x1))	#计算x1处一、二阶导数
print('%.1f,%.4f'%der_scalar(f,x2))	#计算x2处一、二阶导数

利用代码中的注释信息不难理解程序。仅提请注意第3、4行分别设置的是驻点 x 1 = 1 − 2 x_1=1-\sqrt{2} x1=12 x 2 = 1 + 2 x_2=1+\sqrt{2} x2=1+2 。运行程序,输出:

0.0,-8.2107
0.0,0.2566

第1行输出的是 f ( x ) f(x) f(x) x 1 = 1 − 2 x_1=1-\sqrt{2} x1=12 处的一、二阶导数值,说明 x 1 x_1 x1确实为驻点,且由于在 x 1 x_1 x1处的二阶导数值近似为-8.2107,根据极值点的充分条件知 x 1 x_1 x1 f ( x ) f(x) f(x)的唯一极大值点,即为本题所求。第二行的输出表明 x 2 = 1 + 2 x_2=1+\sqrt{2} x2=1+2 f ( x ) f(x) f(x)的极小值点,也是最小值点。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值