游戏可以带来快乐

人需要娱乐



当一个人的大脑在一段时间没有达到一个阈值的思考强度后,他就会产生不舒服的感觉。

这种感觉会促使人在满足了生存条件后无法闲下来,总会去找一些事去做。

需要大脑的活跃强度达到一定的阈值,而且这种强度的活动需要保持一定的频率才能排解寂寞。

达到动脑级别的运动所构成的频率称之为“动脑频率”。

这种感觉称之为寂寞

与寂寞做斗争,去做某些行为来帮助自己克服不舒服感,久而久之成为习惯。

有序的信息能排遣寂寞

看书,当信息进入我们的大脑时,我们需要处理这些信息,这个处理过程就是我们抵抗寂寞的过程。

有序的信息是人们思考的基础,也是人类娱乐行为的基础。

在有序信息的基础上,高级思维的涌现是派遣寂寞的本质。

人们总会选择性价比高的方式来满足娱乐

玩家只要能够在初期接受了游戏,就能在很长的时间内得到稳定的排解寂寞的方式。

1.游戏具备其他娱乐方式,没有的复杂结构,复杂的结构能够给用户带来持久的动脑频率。

2.多样化的游戏能够满足各式各样玩家的需求,而多样化的有戏内容则可以让玩家在游戏里得到更持久更满足的动脑频率。

3.游戏具有其他娱乐方式所无法具备的多样化内容。

4.游戏具有其他娱乐方式所无法完成的及时反馈结果的能力。

5.与其他娱乐方式相比,游戏能够在付出很低代价的情况下让玩家获得并保持很长时间的排解寂寞功效。

理性人:当一个人在神智正常的情况下,总会理性的思考问题

自私人:当面临选择时,理性人一定会选择他认为对他好处最多的选项

人的认知决定了他认为哪种选择利益更大


神经认知科学里的基础知识点

肢体记忆:人类在执行重复活动时,与该活动相关的神经细胞会记忆该活动发生时的情况,一段时间后,这些神经细胞在执行该活动时就能自己处理更多信息,以减少大脑处理的信息量。

大脑活动:当我们需要大脑处理信息时,这些信息会通过大脑皮质传递到有关的活动区域,不同的区域有不同的效果,最终这些区域会对信息进行处理。

脑电波:当我们的大脑活动时,大脑皮质会出现活动的电信号,这些电信号不同的频率反应了大脑不同的活动情况。

如果一个神智健全的人遇到问题,他一定会理性的选择他认为性价比最高的方式去解决这个问题,在他选择的过程中,他的大脑会产生高频的活动,这种活动会呈现出脑电波频率更高的客观生理现象。

如果一种行为活动和规则的存在仅仅是为了帮助人们排解寂寞,我们就把这种行为活动和规则叫作娱乐。

1.人类的大脑始终活动,活动停止,大脑死亡

2.在清醒的情况下,大脑需要保持某种状态

3.在这种状态可以通过情绪刺激与高频动脑来维持一段时间

4.大脑缺乏这种状态时会产生不舒适感

5.为抵抗这种不舒适感,人们就会寻找刺激

  • 人类拥有记忆与分析的能力
  • 清醒时,人类一定会根据记忆选择刺激方式
  • 在记忆分析结果下,人类总选最优的


认知决定寂寞值,它们成反比

理解玩家

如果寂寞模型成立,我们可以得出一条人类行为的流程线:“当人类满足了生存需求后,对抗寂寞的行为就会成为人类活动的本质目的,认知的局限决定了该活动的类型”。

有可能是学习,有可能是娱乐,一个人的认知决定了他有多少种方式可供选择,在这些方式中,性价比高的方式会得到了他的最终选择。

一个人选择了一种排解寂寞的活动后,经过不断的学习与熟练,这项活动给主体带来的排解寂寞的功效是有时限的,它不能无限制地帮助主体排解寂寞。当一个活动到期后,这个人就需要寻找新的方式去排解寂寞。

个人行为的局限性让玩家得到动脑频率的代价随着时间越来越高,不管是与其他人交流还是游戏内部的多人模式出现,都让玩家得到了新的体验方式,同时降低了玩家获得动脑频率的代价,提高了游戏产品排解寂寞的性价比,最终玩家会倾向于以多人模式进行游戏。

也就说,因为性价比的原因,玩家在排解寂寞的过程中总需要“求偶”。这种求偶行为并不单指异性同时也包含同性和一切能给玩家带来性价比的对象。

寂寞使得玩家倾向于求偶行为,学习又使得玩家再求偶的过程中不断地需要新的变化,如果求偶的主体与客体之间不能产生共同的目标,共同或者相互之间创造出新鲜感以及策略性,并且他们之间没有其他利益维持,就会因为没法在一起好好排解寂寞而分开。

设计游戏组队系统

1.梯度水平线

2.维持组队的系统

3.组队的平台

根据玩家的求偶倾向,为玩家创造组织的平台,可以降低玩家求偶的代价。

我们将玩家之间互换的所有利益没成为资源。

将玩家之间互相排解寂寞的功效看成一种资源的交换,就是寂寞论分析玩家与玩家关系的重要方法。

总结

1.一个人排解寂寞受到局限的认知控制,总有技穷的时候、而多人一起排解寂寞。则是多个思维世界的碰撞,猜测和观察,应对别人的行为就成了一种变化无穷的排解寂寞方式。所以我们为玩家设计了多人游戏的游戏模式,从而提高他们在游戏内排解寂寞的性价比。

2.而当人数达到参与者处理能力上限的时候,我们又为他们安排了不同的分工,让团队得以合理地存在。

3.最后我们再将团队成员组织起来,让他们有一个共同的平台去交换资源,与现实世界并没什么不同,不过在游戏内会更加简单,这个系统也更加可控。

4.从组队到组织,从组织到资源的交换,与现实世界并没什么不同,不过在游戏内会更加简单,整个系统也更加可控。

在moba游戏中,整个过程都充满了高频率的动脑,这种需要大脑思考的刺激一遍又一遍地快速在大脑中流动,就会使得大脑中的这一条链接通路的细胞越来越活跃,最终产生惯性思维。

基本上所有的玩家都希望自己能够获得胜利,所以玩家一遍又一遍地思考战斗策略时,他也会对胜利做出一些想象,慢慢地,战斗策略的区域在大脑中就会与胜利感觉的区域联系起来,形成一种思维惯性。

当一场战斗结束后,玩家不再需要思考,此时动脑频率瞬间降到一个很小的值,原本一遍又一遍洗刷的回路突然感受不到刺激了,这时候玩家就会产生很大的情绪刺激。如果胜利了,因为之前在玩家的大脑中胜利得区域与战斗策略的区域之间的流通代价小了,所以胜利区域的刺激能够传到战斗策略区域,使得玩家再受到了胜利情绪刺激的时候不会产生难过的感觉。

而如果这个玩家失败了,因为玩家之前一直没有在思考失败,大脑中失败区域与战斗策略区域之间的联系代价很高,所以大脑中失败区域受到的刺激无法将信号递给战斗策略区域,最终战斗策略区域加上预期的胜利区域的感觉突然消失,造成了不好的情绪刺激。

把这种过程叫做“惯性崩溃”。

玩家高频率的动脑是PVP的过程,而高频率动脑带来的结果就是玩家很容易产生情绪刺激,这是PVP备受喜爱的主要原因之一。

设计多个不同复杂度的规则以满足不同玩家在同一个系统中的需求。

从心理学角度讲,凡事都会使人产生预期。当人们产生情绪刺激时,如果结果在预期内,就会产生正面情绪,如果结果与预期相反,则会产生负面情绪。

给玩家一个预期,培养一段时间,再摧毁这个预期。

让玩家死在意料之外

很多设计师都害怕过多的失败会让玩家产生挫败感,要知道,那是因为这些失败都在玩家的预期中,通常这时候玩家的离开都是因为纯数值系统给玩家带来了绝望,他们除了离开游戏或充值,没有其他路可以走。

而设计出色的游戏,将PVP平衡做到了规则上,玩家始终有得选择,失败很多源于自己的“不小心·”,设计师的“彩蛋”,队友的“不给力”。在这种非预期的失败下,玩家得到了情绪刺激,满足了排解寂寞的需求,自然也就不会离开你的游戏。

总结:

1.长期对一个预期的思考会产生思维惯性。

2.短期高频对这个预期思考会使得思维惯性更加强烈

3.当思维惯性崩塌时,就会产生情绪刺激

4.情绪刺激能够带来足够的动脑频率,使玩家排解寂寞

原文:http://www.manew.com/thread-145556-1-1.html

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值