哈夫曼编码的生成

本文不详述哈夫曼编码原理,而是重点解析如何在不排序的情况下找到序列中的两个最小元素的算法,该算法在哈夫曼编码过程中至关重要。并提供哈夫曼编码的完整代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

哈夫曼的原理教科书上已经讲得很详细了。这里不做详细介绍,但书上的代码有的很不好理解,其中在这里给大家先介绍一个查找一个序列的两个最小数的算法。

#include <stdio.h>
#include <stdlib.h>
void mainWWWW()
{
    int a[]={10,20,1,2,3,2,11,33};
    int min1=10000,min2=10000;
    int nCount=sizeof(a)/sizeof(int);
    for(int i=0;i<nCount;i++)//这个是求一个序列的两个最小数的方法
    {
        if(a[i]<min1)
        {
            min2=min1;
            min1=a[i];
        }else if(a[i]<min2)
        {
            min2=a[i];
        }
    }
    printf("最小的两个数是:%d,%d",min1,min2);
    system("pause");
}

上述代码讲得是如何在一个序列中找到两个最小数的算法(不通过排序实现)这个算法在哈弗曼编码中有使用。
说这么多,给大家附上哈弗曼编码的详细代码

#include <stdio.h>
#include <stdlib.h>
#include <string>
#define N 50
#define M 2*N-1
struct HTreeNode     //哈夫曼树
{
  char data[10];//该节点存放的内容
  int weight;
  int parent;
  int lchild;
  int rchild;
};
typedef char** HuffmanCode;//一个字符数组的数组,即存放n个节点的哈弗曼编码


void CreateHTree(HTreeNode ht[],int n)
{
    int i,k;
    int lchild,rchild;//保存权重最小的两个节点的位置
    int min1,min2;
    for(i=0;i<2*n-1;i++)
        ht[i].parent=ht[i].lchild=ht[i].rchild=-1;//初始化N个节点数据
    for(i=n;i<2*n-1;i++)//构造哈弗曼树
    {
        min1=min2=32767;//县设一个初值
        lchild=rchild=-1;
        for(k=0;k<=i-1;k++)
        {
            if(ht[k].parent==-1)//只在尚未够着二叉树的结点中查找
            {
                if(ht[k].weight<min1)//找到最小权值点
                {
                    min2=min1;
                    rchild=lchild;
                    min1=ht[k].weight;
                    lchild=k;
                }else if(ht[k].weight<min2)
                {
                    min2=ht[k].weight;
                    rchild=k;
                }
            }
        }
        //到这里表明已经找到了最小的两个数字
        ht[lchild].parent=i;
        ht[rchild].parent=i;
        ht[i].weight=ht[lchild].weight+ht[rchild].weight;
        ht[i].lchild=lchild;
        ht[i].rchild=rchild;
    }
}

//ht[]是我们已经生成的哈夫曼树,n代表原来的结点数
void CreateHuffmanCode(HTreeNode ht[],int n)
{
    char** HC=(char**)malloc((n+1)*sizeof(char*));//存放所以节点的哈弗曼编码
    //HuffmanCode HC=new (HuffmanCode)(char*)[n+1];
    char *cd=(char*)malloc(n*sizeof(char));//生成对每个节点所需要的哈弗曼编码内存大小
    cd[n-1]='\0';
    int start;
    int f;
    for(int i=0;i<n;i++)
    {
        start=n-1;
        for(int c=i,f=ht[i].parent;f!=-1;c=f,f=ht[f].parent)
        {      //一直向上知道根节点,即f(f表示一个节点的父节点,根节点的父节点是-1)
            if(ht[f].lchild==c)
                cd[--start]='0';//表名是在左边
            else
                cd[--start]='1';//表名是在右边
        }
        //printf("%s",cd);
        //每一个节点的哈弗曼编码已经存放在了cd中
        HC[i]=(char*)malloc((n-start)*sizeof(char));//为每一个编码开辟内存
        strcpy(HC[i],&cd[start]);//将编码拷贝到一个总的管理编码结构中
    }
    free(cd);//释放这个内存(这个数据在这里已经没有用了,因为在HC中已经存在)
    for(int i=0;i<n;i++)
    {
        printf("%s\t",HC[i]);//打印每个编码
    }
}

void main()
{
    int n;
    printf("请输入有多少个节点\n");
    scanf("%d",&n);
    printf("请输入每一个节点的值及其权重,权重与节点值用 分割开\n");
    HTreeNode *pHt=new HTreeNode[2*n-1];
    for(int i=0;i<n;i++)
    {
        scanf("%s%d",pHt[i].data,&pHt[i].weight);
    }
    CreateHTree(pHt,n);
    CreateHuffmanCode(pHt,n);
    system("pause");
}


以上代码花了博主两个多小时的敲打,希望大家也能从中学到知识。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值