一文带你深刻理解三维曲面法向量的推导计算

一直以来,对空间曲面的隐函数的梯度表示法向量理解不是很深刻,感觉不如向量叉乘来的直观,本文就是利用向量叉乘表明曲面梯度为啥就是法向量。
这里写图片描述

### Milvus 向量数据库入门教程 #### 一、基本概念与功能概述 Milvus 是一款专为处理非结构化数据设计的强大向量数据库,旨在解决复杂语义关系和高维向量数据的相似性检索问题[^1]。相比于传统的关系型数据库,Milvus 提供了更加智能化和高效的检索方式,适用于需要语义理解和多模态处理的应用场景。 #### 二、安装与环境配置 对于初学者来说,推荐使用 **Milvus Lite** 版本进行本地 Python 程序开发。该版本非常适合初次接触 Milvus 的用户,因为它简单易用且无需复杂的部署流程[^2]。而对于更大规模的数据集或生产环境中,则建议考虑 Docker 或 Kubernetes 部署方案。这些高级部署模式不仅提供了更高的灵活性,还保持了 API 的一致性,使得迁移变得轻松便捷。 #### 三、核心操作指南 ##### 创建集合 (Collection) 在开始之前,首先要定义并创建一个新的集合用于存储向量数据: ```python from pymilvus import CollectionSchema, FieldSchema, DataType, connections, utility connections.connect("default") fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128) ] schema = CollectionSchema(fields, description="Example collection") collection = Collection(name="example_collection", schema=schema) ``` ##### 插入数据 接着可以往刚刚建立好的集合里插入一些测试数据: ```python import numpy as np data = [ [i for i in range(10)], # id field data [[np.random.rand() * 0.5 for _ in range(128)] for _ in range(10)] # embedding vectors ] mr = collection.insert(data) print(f"Number of entities inserted: {len(mr.primary_keys)}") ``` ##### 构建索引 为了提高查询效率,在实际应用中通常会对特定字段构建索引来加速搜索速度。这里以 HNSW 索引为例展示如何设置参数并创建索引: ```python index_params = { "index_type": "HNSW", "metric_type": "L2", "params": {"M": 16, "efConstruction": 64} } collection.create_index(field_name="embedding", index_params=index_params) ``` ##### 执行搜索 最后一步就是利用已有的索引来进行高效地向量相似度匹配查找: ```python search_param = {"metric_type": "L2", "params": {"ef": 10}} results = collection.search( data=[[0.1]*128], param=search_param, limit=3, expr=None, output_fields=["id"] ) for result in results: print(result) ``` 以上便是关于 Milvus 向量数据库的基础入门指导,涵盖了从安装到执行具体任务所需的各个重要环节[^3][^4].
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值