图像处理Task04图像滤波(图像平滑)

4.1简介

图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像处理的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定的帮助。

4.2 学习目标

  1. 了解图像滤波的分类和基本概念
  2. 理解均值滤波、方框滤波、高斯滤波的原理
  3. 掌握OpenCV框架下滤波API的使用

4.3 内容介绍

  1. 均值滤波、方框滤波、高斯滤波的原理
  2. OpenCV代码实践

4.4 算法理论介绍

4.4.1 均值滤波、方框滤波

1. 滤波分类
线性滤波对领域中的像素计算为线性运算时,如利用窗口函数进行平滑加权求和的运算或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:均值滤波、高斯滤波、盒子滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模板系数不同线性仅是简单地在图像 f f f中逐点移动滤波掩膜 w w w的中心,在每个点 ( x , y ) (x,y) (x,y)处,滤波器在该点处的响应是掩膜所限定的相应领域像素与滤波器系数的乘积结果的累加。
非线性滤波: 利用原始图像跟模板之间的一种逻辑关系得到结果,如最值滤波器、中值滤波器。比较常用的有中值滤波器和双边滤波器。

2. 均值滤波

均值滤波的应用场合根据冈萨雷斯书中的描述,均值模糊可以模糊图像以便得到感兴趣物体的粗略描述,也就是说,去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域,从而对图像有一个整体的认知。即为了对感兴趣的物体得到一个大致的整体的描述而模糊一幅图像,忽略细小的细节

均值滤波的缺陷: 均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声。

均值滤波是上述方框滤波的特殊情况,均值滤波方法是:对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素组成,用模板的均值(方框滤波归一化)来替代原像素的值。公式表示为:
在这里插入图片描述
g ( x , y ) g(x,y) g(x,y)为该邻域的中心像素,它的意思是对应位置的元素相乘,然后求和,再取平均,而不是两个矩阵相乘; n n n跟系数模版大小有关,一般3*3邻域的模板, n n n取为9,如:
[ 1 1 1 1 1 1 1 1 1 ] \left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1& 1 & 1 \end{matrix}\right] 111111111
当然模板是可变的,一般都取奇数,为了处理运算时方便。
注:在实际处理过程中可对图像边界进行扩充,扩充为0或扩充为邻近的像素值。

3.方框滤波(盒子滤波)

方框滤波是一种非常有用的线性滤波,也叫盒子滤波,均值滤波就是盒子滤波归一化的特殊情况。 应用: 可以说,一切需要求某个邻域内像素之和的场合,都有方框滤波的用武之地,比如:均值滤波、引导滤波、计算Haar特征等等。

优势: 就一个字:快!它可以使复杂度为O(MN)的求和,求方差等运算降低到O(1)或近似于O(1)的复杂度,也就是说与邻域尺寸无关了,有点类似积分图吧,但是比积分图更快(与它的实现方式有关)。

在原理上,是采用一个卷积核与图像进行卷积:
在这里插入图片描述
其中:
在这里插入图片描述可见,归一化了就是均值滤波;不归一化则可以计算每个像素邻域上的各种积分特性,方差、协方差,平方和等等
**其中,这里卷积的概念是指把模板旋转180°,再与与图像中对应的像素值进行相乘求和,**下图给出数字图像处理一书中的解释。
在这里插入图片描述

4.4.2高斯滤波

应用: 高斯滤波是一种线性平滑滤波器对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声,如传统车牌识别等。

高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小,更能够保持图像的整体细节。

下面给出二维分布高斯分布公式:
在这里插入图片描述
其中不必纠结于系数,因为它只是一个常数!并不会影响互相之间的比例关系,并且最终都要进行归一化,所以在实际计算时我们是忽略它而只计算后半部分: 在这里插入图片描述
在这里插入图片描述
其中 ( x , y ) (x,y) (x,y)为掩膜内任一点的坐标, ( u x , u y ) (ux,uy) (ux,uy)为掩膜内中心点的坐标,这个坐标与原图像没有关系,在图像处理中可认为是整数; σ σ σ是标准差。

例如:要产生一个3×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)。
在这里插入图片描述
这样,将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。对于窗口模板的大小及掩膜 ( 2 k + 1 ) × ( 2 k + 1 ) (2k+1)×(2k+1) (2k+1)×(2k+1),模板中各个元素值的计算公式如下:

在这里插入图片描述
这样计算出来的模板有两种形式:小数和整数。

小数形式的模板,就是直接计算得到的值,没有经过任何的处理;
整数形式的,则需要进行归一化处理,将模板左上角的值归一化为1,使用整数的模板时,需要在模板的前面加一个系数,系数为模板系数和的倒数

生成高斯掩膜(小数形式)

知道了高斯分布原理,实现起来也就不困难了。

首先我们要确定我们生产掩模的尺寸wsize,然后设定高斯分布的标准差。生成的过程,我们首先根据模板的大小,找到模板的中心位置center。 然后就是遍历,根据高斯分布的函数,计算模板中每个系数的值。

最后模板的每个系数要除以所有系数的和。这样就得到了小数形式的模板

import numpy as np
import math
def generateGaussMask(x0,y0,sigma):
    mask = []
    h = y0
    w = x0
    center_h = (h-1)/2
    center_w = (w-1)/2
    a=0
    for i in range(h):
        y = pow(i - center_h,2)
        for j in range(w):
            x = pow(j-center_w,2)
            g = math.exp(-(x+y)/(2*sigma*sigma))
            mask.append(g)
            a += g
    return a,mask
     _,mask=generateGaussMask(3,3,0.8)
a,_= generateGaussMask(3,3,0.8)
print(a)
mask  =np.array(mask)
print(mask)
print(mask/a)

输出结果以及 3×3,σ=0.8的小数型模板:
3.6697789956908493
[0.20961139 0.45783336 0.20961139 0.45783336 1. 0.45783336
0.20961139 0.45783336 0.20961139]
[0.05711826 0.12475775 0.05711826 0.12475775 0.27249597 0.12475775
0.05711826 0.12475775 0.05711826]

σ的意义及选取

通过上述的实现过程,不难发现,高斯滤波器模板的生成最重要的参数就是高斯分布的标准差σ。**标准差代表着数据的离散程度,如果σ较小,那么生成的模板的中心系数较大,而周围的系数较小,这样对图像的平滑效果就不是很明显;**反之,σ较大,则生成的模板的各个系数相差就不是很大,比较类似均值模板,对图像的平滑效果比较明显。

σ越大,分布越分散,各部分比重差别不大,于是生成的模板各元素值差别不大,类似于平均模板;
σ越小,分布越集中,中间部分所占比重远远高于其他部分,反映到高斯模板上就是中心元素值远远大于其他元素值,于是自然而然就相当于中间值得点运算。

4.5基于Python-OpenCV的实现

目标

学会使用各种低通滤镜模糊图像—将定制的滤镜应用于图像(2D卷积)

2D卷积(图像过滤)

与一维信号一样,还可以使用各种低通滤波器(LPF),高通滤波器(HPF)等对图像进行滤波。LPF有助于消除噪声,使图像模糊等。HPF滤波器有助于在图像中找到边缘

OpenCV提供了一个函数cv.filter2D来将内核与图像进行卷积。例如,我们将尝试对图像进行平均滤波。5x5平均滤波器内核如下所示:
K = 1 25 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] K = \frac{1}{25} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} K=2511111111111111111111111111
操作如下:保持这个内核在一个像素上,将所有低于这个内核的25个像素相加,取其平均值,然后用新的平均值替换中心像素。它将对图像中的所有像素继续此操作。试试这个代码,并检查结果:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('D:/Mechine_learning_data/lena512.bmp')
kernel = np.ones((5,5),np.float32)/25
dst = cv.filter2D(img,-1,kernel)
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(dst),plt.title('Averaging')
plt.xticks([]), plt.yticks([])
plt.show()

结果:在这里插入图片描述

图像平滑(图像模糊)

通过将图像与低通滤波器内核进行卷积来实现图像模糊。这对于消除噪音很有用。它实际上从图像中消除了高频部分(例如噪声,边缘)。因此,在此操作中边缘有些模糊。(有一些模糊技术也可以不模糊边缘)。OpenCV主要提供四种类型的模糊技术。

1.平均

这是通过将图像与归一化框滤镜进行卷积来完成的。它仅获取内核区域下所有像素的平均值,并替换中心元素。这是通过功能cv.blur()cv.boxFilter()完成的。检查文档以获取有关内核的更多详细信息。我们应该指定内核的宽度和高度。3x3归一化框式过滤器如下所示:
K = 1 9 [ 1 1 1 1 1 1 1 1 1 ] K = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} K=91111111111
注意 如果不想使用标准化的框式过滤器,请使用cv.boxFilter()。将参数normalize = False传递给函数。

查看下面的示例演示,其内核大小为5x5:

img = cv.imread('D:/Mechine_learning_data/lena512.bmp')
blur = cv.blur(img,(5,5))
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur),plt.title('Blurred')
plt.xticks([]), plt.yticks([])
plt.show()

结果为:在这里插入图片描述

2.高斯模糊

在这种情况下,代替盒式滤波器,使用了高斯核。这是通过功能cv.GaussianBlur() 完成的。我们应指定内核的宽度和高度,该宽度和高度应为正数和奇数。我们还应指定X和Y方向的标准偏差,分别为sigmaX和sigmaY。如果仅指定sigmaX,则将sigmaY与sigmaX相同。如果两个都为零,则根据内核大小进行计算。高斯模糊对于从图像中去除高斯噪声非常有效。

img = cv.imread('D:/Mechine_learning_data/lena512.bmp')
blur = cv.GaussianBlur(img,(5,5),0)
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur),plt.title('Blurred')
plt.xticks([]), plt.yticks([])
plt.show()

输出结果:在这里插入图片描述

3.中位模糊(非线性滤波)

在这里,函数cv.medianBlur() 提取内核区域下所有像素的中值,并将中心元素替换为该中值。这对于消除图像中的椒盐噪声非常有效。有趣的是,在上述过滤器中,中心元素是新计算的值,该值可以是图像中的像素值或新值。但是在中值模糊中,中心元素总是被图像中的某些像素值代替,有效降低噪音。其内核大小应为正奇数整数

a.给图像添加椒盐噪声
b.使用中值滤波观察结果
import random
def sp_noise(image,prob):
    '''
    添加椒盐噪声
    prob:噪声比例 
    '''
    output = np.zeros(image.shape,np.uint8)
    thres = 1 - prob 
    for i in range(image.shape[0]):
        for j in range(image.shape[1]):
            rdn = random.random()
            if rdn < prob:
                output[i][j] = 0
            elif rdn > thres:
                output[i][j] = 255
            else:
                output[i][j] = image[i][j]
    return output
src1 = sp_noise(img,0.05)
median = cv.medianBlur(src1,5)
plt.subplot(131),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(src1),plt.title('Noised')
plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(median),plt.title('Median')
plt.xticks([]), plt.yticks([])
plt.show()

输出结果为:在这里插入图片描述可以发现中值滤波可以对于消除图片中的椒盐噪声非常有效!

c.给图像添加高斯噪声
d.使用中值滤波进行观察
def gasuss_noise(image, mean=0, var=0.001):
    ''' 
        添加高斯噪声
        mean : 均值 
        var : 方差
    '''
    image = np.array(image/255, dtype=float)
    noise = np.random.normal(mean, var ** 0.5, image.shape)
    out = image + noise
    if out.min() < 0:
        low_clip = -1.
    else:
        low_clip = 0.
    out = np.clip(out, low_clip, 1.0)
    out = np.uint8(out*255)
    #cv.imshow("gasuss", out)
    return out
src2 = gasuss_noise(img,0.05)
median = cv.medianBlur(src1,5)
plt.subplot(131),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(src1),plt.title('Noised')
plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(median),plt.title('Median')
plt.xticks([]), plt.yticks([])
plt.show()

输出结果:在这里插入图片描述发现在灰度图下,中值滤波处理高斯噪声仍然有较好的效果;
关于噪声和滤波的处理的对应方法在此处

4.双边滤波

cv.bilateralFilter() 在去除噪声的同时保持边缘清晰锐利非常有效。但是,与其他过滤器相比,该操作速度较慢。我们已经看到,高斯滤波器采用像素周围的邻域并找到其高斯加权平均值。高斯滤波器仅是空间的函数,也就是说,滤波时会考虑附近的像素。它不考虑像素是否具有几乎相同的强度。它不考虑像素是否是边缘像素。因此它也模糊了边缘,这是我们不想做的。

双边滤波器在空间中也采用高斯滤波器,但是又有一个高斯滤波器,它是像素差的函数。空间的高斯函数确保仅考虑附近像素的模糊,而强度差的高斯函数确保仅考虑强度与中心像素相似的那些像素的模糊。由于边缘的像素强度变化较大,因此可以保留边缘。

img = cv.imread('D:/Mechine_learning_data/lena512.bmp')
blur = cv.bilateralFilter(img,9,500,500)
blur1 = cv.GaussianBlur(img,(5,5),0)
plt.subplot(131),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(blur),plt.title('bilateral')
plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(blur1),plt.title('Gaussian')
plt.xticks([]), plt.yticks([])
plt.show()

输出结果为:在这里插入图片描述看到,表面上的许多信息消失了,但是边缘依然保留。

The End

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值