三种常见的平滑滤波方法

一、概述

  平滑滤波,顾名思义就是对信号进行处理使之整体显得更加平滑,降低噪声影响,提高信号质量,它常见于数学信号处理和图像处理,一般意义上的数字信号多体现于一维数据,图像信号多体现于二维数据。
  均值滤波、中值滤波、高斯滤波是三种常见的平滑滤波方法,其中均值滤波和高斯滤波是线性技术,中值滤波是非线性技术。它们实现的基本原理是基本一致的,指定一个滑动窗口,计算其中的均值、中值、卷积值输出到当前位置。
  均值滤波、高斯滤波对高斯噪声表现较好,但对椒盐噪声表现较差;中值滤波则对椒盐噪声表现较好,对高斯噪声表现较差。

二、基本原理

  均值滤波、中值滤波、高斯滤波的基本原理都是以一个滑动窗口,以指定的计算方式得到其中的值,将它输出到信号的当前位置,
在这里插入图片描述
在这里插入图片描述
  均值滤波计算均值,中值滤波计算中值,高斯滤波计算卷积值。窗口大小L的设定一般为2k+1,每次计算窗口中心位置的值。
  该种策略下,在边缘区域窗口输出的位置是无法覆盖到的,因此需要特定的方式进行处理。处理的方式通常有四种:不作处理、只计算窗口包含区域、外周填充0、外周填充邻近元素值或指定值。

1.均值滤波

(1)一维
  对于信号(a1,a2,…,an),定义一个大小为L的窗口,计算窗口中元素的均值
v m e a n = 1 L ∑ i = 1 L x i vmean=\frac{1}{L}\sum_{i=1}^{L}{x_i} vmean=L1i=1Lxi
  作为对应窗口 L + 1 2 \frac{L+1}{2} 2L+1位置处的输出值。
(2)二维
  对于一幅灰度图像
KaTeX parse error: No such environment: equation* at position 9: A=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…
  定义一个大小为L*L的窗口,计算窗口中元素的均值
v m e a n = 1 L 2 ∑ i = 1 L ∑ j = 1 L p i j vmean=\frac{1}{L^{2}}\sum_{i=1}^{L}{\sum_{j=1}^{L}{p_{ij}}} vmean=L21i=1Lj=1Lpij
  作为对应窗口 ( L + 1 2 , L + 1 2 ) \left( \frac{L+1}{2},\frac{L+1}{2} \right) (2L+1,2L+1) 位置处的输出值。

2.中值滤波

(1)一维
  对于信号(a1,a2,…,an),定义大小为L的窗口,计算窗口中元素的中值。

  • 升序(降序)排列为(r1,r2,…,rL),
  • 取中间 L + 1 2 \frac{L+1}{2} 2L+1处的值,作为对应窗口 L + 1 2 \frac{L+1}{2} 2L+1 位置处的输出值。

(2)二维
  对于一幅灰度图像
KaTeX parse error: No such environment: equation* at position 9: A=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…
  定义大小为L*L的窗口,计算窗口中元素的中值。

  • 升序(降序)排列为(r1,r2,…,rL2),
  • 取中间 L 2 + 1 2 \frac{L^2+1}{2} 2L2+1处的值,作为对应窗口 ( L + 1 2 , L + 1 2 ) \left( \frac{L+1}{2}, \frac{L+1}{2}\right) (2L+1,2L+1)位置处的输出值。

3.高斯滤波

  高斯滤波类似于均值滤波和中值滤波,形式上和均值滤波是统一的。均值滤波计算的是元素的均值,也就是均数1/n的加权和。高斯滤波同样定义一个滑动窗口,这个窗口中对应于每个元素定义了一个权重参数,窗口的输出就是数据元素和这些权重参数的加权和,因为这个运算是形式化的卷积运算,因此这个窗口叫做卷积核。
(1)一维
  对于信号(a1,a2,…,an),定义一个大小为L的卷积核
( w 1 , w 2 , . . . , w L ) \left( w_1,w_2,...,w_L \right) (w1,w2,...,wL)
  与数据元素做卷积运算,得到值
v g a u s = ∑ i = 1 L w i ⋅ x i vgaus=\sum_{i=1}^{L}{w_i\cdot x_i} vgaus=i=1Lwixi
  作为对应窗口 L + 1 2 \frac{L+1}{2} 2L+1位置处的输出值。
(2)二维
  对于一幅灰度图像
KaTeX parse error: No such environment: equation* at position 9: A=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…
  定义一个大小为L*L的卷积核
KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…
  与数据元素做卷积运算,得到值
v g a u s = ∑ i = 1 L ∑ j = 1 L w i j ⋅ x i j vgaus=\sum_{i=1}^{L}{\sum_{j=1}^{L}{w_{ij}\cdot x_{ij}}} vgaus=i=1Lj=1Lwijxij
  作为对应窗口 ( L + 1 2 , L + 1 2 ) \left( \frac{L+1}{2}, \frac{L+1}{2}\right) (2L+1,2L+1)位置处的输出值。

4.边缘处理

  滤波窗口处在数据边缘区域时,对于最外周的 L − 1 2 \frac{L-1}{2} 2L1宽度的那些元素,窗口输出的位置无法涵盖到它们,因此需要以一定的策略对该区域进行处理。常见的处理策略有以下几种:
(1)不作处理
  对于边缘区域不作处理,计算时直接略过。
(2)只计算窗口包含区域
  照常由窗口的中心点进行覆盖,计算时不计外周缺失的部分,只计算窗口包含的区域。
(3)外周填充0
  照常由窗口的中心点进行覆盖,外周缺失的部分填充0。
(4)外周填充邻近元素值或其他指定值
  照常由窗口的中心点进行覆盖,外周缺失的部分填充邻近元素值或其他指定的值。

三、示例

1.均值滤波

一维:
  有信号段S=[3, 2, 4, 5, 13, 7, 9, 10, 1, 6],定义长度为3的窗口,进行均值滤波的平滑处理,边缘区域以填充0的方式操作。
  首位置窗口的三个元素为[0,3,2],输出均值 0 + 3 + 2 3 ≈ 1.67 \frac{0+3+2}{3}\approx1.67 30+3+21.67
  窗口滑至下一位置,三个元素为[3,2,4],输出均值 3 + 2 + 4 3 = 3 \frac{3+2+4}{3}=3 33+2+4=3
  窗口滑至下一位置,三个元素为[2,4,5],输出均值 2 + 4 + 5 3 ≈ 3.67 \frac{2+4+5}{3}\approx3.67 32+4+53.67
  同样地,窗口依次输出值7.33、8.33、9.67、8.67、6.67、5.67,在最后一个窗口位置,三个元素为[1,6,0],输出均值2.33。
  因此,输出的信号段为O=[1.67, 3, 3.67, 7.33, 8.33, 9.67, 8.67, 6.67, 5.67, 2.33]。


python实现:

import numpy as np
from scipy import signal

S = np.array([3, 2, 4, 5, 13, 7, 9, 10, 1, 6])
slid_wind_L = 3  # 滑动窗口长度
filter_kernal = np.ones(slid_wind_L) / float(slid_wind_L)  # 滤波核
Out = signal.convolve(S, filter_kernal,'same')  # 滤波计算
Out = np.round(Out,2)  # 保留两位小数
print('Out:\n',Out)

在这里插入图片描述

二维:
  有图像矩阵
KaTeX parse error: No such environment: equation* at position 9: I=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…
  定义长度为3*3的窗口,进行均值滤波的平滑处理,边缘区域以填充0的方式操作。
  首位置窗口内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…,输出均值 1 9 ( 0 + 0 + 0 + 0 + 0 + 4 + 3 + 2 + 5 ) ≈ 1.56 \frac{1}{9}\left( 0+0+0+0+0+4+3+2+5 \right)\approx1.56 91(0+0+0+0+0+4+3+2+5)1.56
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…,输出均值2.44;
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…,输出均值2.56;
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix… ,输出均值1.67;
  同样地,窗口依次输出值1.78、3.33、4.33、3.44、2.11、4.11、5.11、4.22、1.33、2.56、3.67、3.33。
  因此,输出的图像矩阵为
KaTeX parse error: No such environment: equation* at position 9: O=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…


python实现:

I = np.array([[4,3,1,6],[2,5,7,1],[2,0,6,10],[7,3,5,9]])
slid_wind_L = 3  # 滑动窗口长度
filter_kernal = np.ones((slid_wind_L,slid_wind_L)) / float(slid_wind_L*slid_wind_L)  # 滤波核
Out = signal.convolve2d(I, filter_kernal, mode='same') # 滤波计算
Out = np.round(Out,2)  # 保留两位小数
print('Out:\n',Out)

在这里插入图片描述

2.中值滤波

一维:
  有信号段S=[3, 2, 4, 5, 13, 7, 9, 10, 1, 6],定义长度为3的窗口,进行中值滤波的平滑处理,边缘区域以填充0的方式操作。
  首位置窗口的三个元素为[0,3,2],输出中值2;
  窗口滑至下一位置,三个元素为[3,2,4],输出中值3;
  窗口滑至下一位置,三个元素为[2,4,5],输出中值4;
  同样地,窗口依次输出值5、7、9、9、9、6、1。
  因此,输出的信号段为O=[2, 3, 4, 5, 7, 9, 9, 9, 6, 1]。


python实现:

S = np.array([3, 2, 4, 5, 13, 7, 9, 10, 1, 6])
Out = signal.medfilt(S,3)  # 滤波计算
Out = np.round(Out,2)  # 保留两位小数
print('Out:\n',Out)

在这里插入图片描述

二维:
  有图像矩阵
KaTeX parse error: No such environment: equation* at position 9: I=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…
  定义长度为3*3的窗口,进行中值滤波的平滑处理,边缘区域以填充0的方式操作。
  首位置窗口内容为KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix… ,输出中值0;
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix… ,输出中值2;
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix… ,输出中值1;
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix… ,输出中值0;
  同样地,窗口依次输出值2、3、5、1、2、5、5、5、0、2、3、0。
因此,输出的图像矩阵为
KaTeX parse error: No such environment: equation* at position 9: O=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…


python实现:

I = np.array([[4,3,1,6],[2,5,7,1],[2,0,6,10],[7,3,5,9]])
Out = signal.medfilt2d(I,[3,3])  # 滤波计算
Out = np.round(Out,2)  # 保留两位小数
print('Out:\n',Out)

在这里插入图片描述

3.高斯滤波

一维:
  有信号段S=[3, 2, 4, 5, 13, 7, 9, 10, 1, 6],定义长度为3的卷积核[1, 0, 1],进行高斯滤波的平滑处理,边缘区域以填充0的方式操作。
  首位置窗口的三个元素为[0,3,2],输出卷积值2;
  窗口滑至下一位置,三个元素为[3,2,4],输出卷积值7;
  窗口滑至下一位置,三个元素为[2,4,5],输出卷积值7;
  同样地,窗口依次输出值17、12、22、17、10、16、1。
  因此,输出的信号段为O=[2, 7, 7, 17, 12, 22, 17, 10, 16, 1]。


python实现:

S = np.array([3, 2, 4, 5, 13, 7, 9, 10, 1, 6])
filter_kernal = np.array([1,0,1])  # 滤波核
filter_kernal = np.flip(filter_kernal)  # 旋转180度
Out = signal.convolve(S, filter_kernal,'same')  # 滤波计算
Out = np.round(Out,2)  # 保留两位小数
print('Out:\n',Out)

在这里插入图片描述

二维:
  有图像矩阵
KaTeX parse error: No such environment: equation* at position 9: I=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…
  定义长度为3*3的卷积核 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…,进行高斯滤波的平滑处理,边缘区域以填充0的方式操作。
  首位置窗口内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix… ,输出卷积值5;
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix… ,输出卷积值9;
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix… ,输出卷积值6;
  窗口滑至下一位置,内容为 KaTeX parse error: No such environment: equation* at position 7: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…,输出卷积值7;
  同样地,窗口依次输出值3、13、19、7、8、21、18、12、0、8、10、6。
  因此,输出的图像矩阵为
KaTeX parse error: No such environment: equation* at position 9: O=\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲*̲}̲ \begin{bmatrix…


python实现:

I = np.array([[4,3,1,6],[2,5,7,1],[2,0,6,10],[7,3,5,9]])
filter_kernal = np.array([[1,0,1],[0,0,0],[1,0,1]])  # 滤波核
filter_kernal = np.flip(filter_kernal)  # 旋转180度
Out = signal.convolve2d(I,filter_kernal,'same')  # 滤波计算
Out = np.round(Out,2)  # 保留两位小数
print('Out:\n',Out)

在这里插入图片描述




pdf下载:
https://download.csdn.net/download/Albert201605/88191979?spm=1001.2014.3001.5503


End.



参考:
https://blog.csdn.net/cjsh_123456/article/details/79261271

### 不同类型的图像滤波方法及其应用 #### 均值滤波 均值滤波通过计算窗口内所有像素的平均值来替换中心像素的值。这种方法可以有效地减少噪声,特别是对于加性随机噪声效果显著。然而,由于其简单地取平均值的方式,在去除噪声的同时也会模糊掉一些重要的边缘细节。 ```python import cv2 import numpy as np img = cv2.imread('image.jpg') mean_filtered_img = cv2.blur(img, (5, 5)) cv2.imshow('Mean Filtered Image', mean_filtered_img) cv2.waitKey(0) cv2.destroyAllWindows() ``` [^1] #### 中值滤波 中值滤波属于非线性的空间域滤波器之一,它不是采用算术运算而是统计排序的方法来进行去噪处理。具体来说就是选取一个模板区域内的所有像素点按亮度大小顺序排列之后取出中间位置的那个数值代替原来的中心像素值。这种技术特别适合用来消除椒盐噪音而不影响图像中的边界特征。 ```python median_filtered_img = cv2.medianBlur(img, 5) cv2.imshow('Median Filtered Image', median_filtered_img) cv2.waitKey(0) cv2.destroyAllWindows() ``` [^3] #### 高斯滤波 高斯滤波基于正态分布函数构建卷积核对输入信号施加权重后的求和操作完成数据平滑化过程。相比于简单的均值滤波而言,该算法能够更好地保留原始结构特性并有效抑制高频成分所携带的信息损失风险;因此被广泛应用于自然场景下的物体识别等领域当中。 ```python gaussian_filtered_img = cv2.GaussianBlur(img, (5, 5), 0) cv2.imshow('Gaussian Filtered Image', gaussian_filtered_img) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禺垣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值