关于RTX50系列显卡(5080/5090/5090D)CUDA12.8版本部署vllm服务相关步骤整理

之前本地部署LLM一直用的都是伯克利开源的VLLM,具体优点就是推理速度快,并发支持极高,不在这里具体阐述了,能看见这篇文章的肯定都是一直用这个服务的。

之前一直在ubuntu22.0系统,4090卡上部署,上上周花了3个W多买到了一张5090D,但是发现这玩意儿没法用之前的镜像开机都开不开,然后安装纯净ubuntu24之后重新部署发现CUDA版本竟然高达12.8,而且多次降级到12.4都不好使。

(这特喵的不会卡买回来用不上吧!于是开始逛issues,各种查发现也有一些反馈但是没有看到具体有用的信息。)
清明假期前提了个issue,然后邮箱里收到了回复关于50系cuda12.8的步骤,于是兴致满满的点开链接开始搭环境。话不多说,言归正传!

1.将你的50系的卡驱动正常安装,cuda版本正常安装到12.8。
运行代码nvidia-smi后能看见如下界面表示兄弟你可以的!
nvidia-smi结果
2.安装anaconda3
这个就不多说了吧,从官网下载Anaconda3-2024.10-1-Linux-x86_64.sh然后直接执行sudo bash Anaconda3-2024.10-1-Linux-x86_64.sh就OK了,细节不多说了,这个教材极多,翻车几率极低…

3.重点开始了啊,创建虚拟环境!
在你的数据存储路径下,执行命令sudo touch environment_linux.yml先创建一个环境的配置文件。
然后执行sudo nano environment_linux.yml编辑这个文件(有工具的话也可以直接点开),输入以下内容:

channels:
  - conda-forge
  - pytorch
  - nvidia
  - defaults
dependencies:
  - python=3.12
  - anaconda
  - pip

然后正常保存,紧接着就可以执行创建环境的命令了conda env create -f environment_linux.yml

4.切换到环境并安装pytorch!
执行命令conda activate vllm成功切换到vllm的环境内,此时命令行最前端有(vllm)表示切换成功。这里需要注意,在这一步耽误我好长时间,cuda12.8版本的pytorch发行版里最高只到12.6,我当时也是没注意装了个12.6就各种出问题。执行命令pip install --pre torch==2.7.0.dev20250312+cu128 --index-url https://download.pytorch.org/whl/nightly/cu128安装torch。

5.测试环境有没有问题
执行python后进入到python编辑窗口,依次输入以下命令并查看输出结果是否一致:

In [1]: import torch

In [2]: torch.__version__
Out[2]: '2.7.0.dev20250312+cu128'

In [3]: print(torch.cuda.is_available())
True

In [4]: device = "cuda"

In [5]: x = torch.ones(5, 5).to(device)

In [6]: y = torch.randn(5, 5).to(device)

In [7]: z = x + y

In [8]: print(z)
tensor([[ 2.7746,  0.7957,  2.3443,  0.8475,  0.4464],
        [ 0.3883, -0.2033,  3.1749,  1.0566,  1.6964],
        [ 0.6829,  0.0952,  1.3061,  1.4194,  1.6353],
        [ 1.4389,  0.7820, -0.0463,  2.0666,  1.4440],
        [ 2.5913,  0.6384,  2.3288,  1.3102,  2.2450]], device='cuda:0')

如果一致可以看到下一步了!
6.克隆项目到本地
执行命令

git clone https://github.com/vllm-project/vllm.git
cd vllm
git checkout v0.8.3
python use_existing_torch.py
pip install -r requirements/build.txt
pip install setuptools_scm

7.修改参与构建项目的线程数
这里翻了两回车,构建就死机构建就死机,开始没留意后来发现死机前32G的内存直接拉满最后一秒开始失联…我是14代i9-14900KF的处理器,我放了8个构建还是挺快的。
export MAX_JOBS=8
python setup.py install
然后就可以等着console一直build了…
一会儿构建完了可以试试whereis vllm看看有没有找到

8.运行本地路径下的模型

python -m vllm.entrypoints.openai.api_server --model /home/tellyes/ai_tools/models/Qwen2.5-32B-Instruct-AWQ --served-model-name qwen --max-model-len=4096 --gpu-memory-utilization=0.8 --max-num-seqs=4 --port 8003

9.常规情况下,此时你已经能成功在50系列的新卡上运行模型了
但是…总有不按套路出牌的环节,我这一套操作下来直接报错了,而且还看不懂…ModuleNotFoundError: No module named 'vllm._C'
然后更换另一种启动方式后又换成另一个错:ValueError: Model architectures ['Qwen2ForCausalLM'] failed to be inspected. Please check the logs for more details.
在issues里查了好半天他们给的什么反馈都是过了还是没用,然后最终升级transformers版本到最最新的版本,执行pip install transformers==4.51.0,再次运行模型,推理成功!

本次操作流程和你在github上看见的步骤有出入,但是我按github上的那套是成功不了,这一套是能成功的,其中两个地方,vllm版本选了最新的0.8.3而不是0.8.2,第二个是直接通过源码构建而不是直接install vllm,需要注意这两个地方。

下一个还得赶紧去部GPTSoVits到5090上,希望不要再踩什么坑了。

<think>好的,我需要帮助用户确定适配NVIDIA 5090D显卡CUDA、Python和PyTorch版本。首先,我需要确认5090D显卡的架构和兼容的CUDA版本。不过,用户提到的“5090D”可能是一个笔误,因为目前NVIDIA并没有发布过这个型号的显卡。常见的型号比如3090、4090,或者是专业级的A100、H100等。可能用户想咨询的是4090D,或者是另一个存在的型号?如果是4090,它基于Ada Lovelace架构,通常需要CUDA 11.8或更高版本支持。 假设用户确实指的是4090D或其他相近型号,那么需要查看NVIDIA官方文档确认其计算能力,从而确定支持的CUDA版本。例如,Ada架构的显卡通常需要CUDA 11.8或更高。然后,PyTorch的版本需要对应支持该CUDA版本。例如,PyTorch 2.0及以上通常支持CUDA 11.7和12.x。Python版本则需要看PyTorch的要求,比如PyTorch 2.0可能需要Python 3.8-3.10。 另外,用户提供的引用中,引用[2]提到使用CUDA 11.1和PyTorch 1.9.0,但这是较旧的版本,可能不适用于较新的显卡。因此,可能需要推荐更高版本CUDA和PyTorch。例如,对于Ada架构的显卡,推荐CUDA 12.x,搭配PyTorch 2.1或更高版本,Python 3.10或3.11。需要检查PyTorch官网的版本兼容性表格,确认哪些版本支持所需的CUDA。同时,安装时需要确保显卡驱动支持对应的CUDA版本,例如CUDA 12.x需要至少特定版本的NVIDIA驱动。 总结步骤:1. 确认显卡型号和架构;2. 确定对应的CUDA版本;3. 查找PyTorch版本支持该CUDA;4. 确定Python版本兼容PyTorch。如果用户型号有误,可能需要指出并提供常见型号的配置建议。</think>根据NVIDIA显卡的兼容性要求,适配5090D显卡CUDA、Python和PyTorch版本需满足以下条件: ### 1. **CUDA版本选择** - **5090D显卡架构假设**:若该显卡属于Ada Lovelace架构(如RTX 4090D),则需**CUDA 11.8或更高版本**(如CUDA 12.1)[^1][^2]。 - **驱动要求**:需安装NVIDIA驱动版本≥525.60.11(以支持CUDA 12.x)。 ### 2. **PyTorch版本匹配** - **CUDA 12.1**:推荐使用**PyTorch 2.1.0及以上版本**,安装命令为: ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` - **CUDA 11.8**:可选择**PyTorch 1.13.0+**,但建议优先使用更高版本以获得完整功能支持[^1]。 ### 3. **Python版本兼容性** - PyTorch 2.1.0支持**Python 3.8-3.11**,建议使用**Python 3.10或3.11**以匹配最新依赖库。 ### 4. **验证安装** ```python import torch print(torch.__version__) # 应输出≥2.1.0 print(torch.cuda.is_available()) # 应返回True print(torch.version.cuda) # 应显示12.1或11.8 ``` ### 注意事项 - 若实际显卡型号存在笔误(如应为4090D),请以[NVIDIA官方文档](https://developer.nvidia.com/cuda-toolkit)为准。 - 安装前需通过`nvidia-smi`命令确认驱动版本支持CUDA 12.x/11.x。 ---
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值