数理统计中的区间估计

本文详细介绍了数理统计中的区间估计概念,包括置信区间的含义和构造步骤。具体讨论了正态总体均值与方差的区间估计情况,如单个总体和两个正态总体的均值差、方差的置信区间,通过实例解析了不同条件下的区间估计方法。
摘要由CSDN通过智能技术生成

区间估计

用点估计 θ^(X1,X2,,Xn) 来估计总体的未知参数 θ ,一旦我们获得了样本观察值 (x1,x2,,xn) ,将它代入 θ^(X1,X2,,Xn) ,即可得到 θ 的一个估计值。这很直观,也很便于使用。但是,点估计值只提供了 θ 的一个近似值,并没有反映这种近似的精确度。同时,由于 θ 本身是未知的,我们也无从知道这种估计的误差大小。因此,我们希望估计出一个真实参数所在的范围,并希望知道这个范围以多大的概率包含参数真值,这就是参数的区间估计问题。

定义

θ 为总体 ξ 的未知参数, ξ1,ξ2,,ξn ξ 的一个子样, T1(ξ1,ξ2,,ξn),T2(ξ1,ξ2,,ξn) 为两个统计量。对于任意给定的 α(0<α<1) ,若 T1,T2 满足

P{ T1θT2}=1α
——(4)
则称随机区间 [T1,T2] θ 的置信水平为 1α 的区间估计, α 为显著性水平, T1,T2 分别称为置信下限和置信上限.
注意:也称 T2T1 为该区间估计的精度。
值得注意的是,置信区间 (θ^1,θ^2) 是一个随机区间,对于给定的样本 (X1,X2,,Xn) , 可能包含未知参数 (θ^1,θ^2) ,也可能不包含 θ 。但(4)表明,在重复取样下,将得到许多不同的区间 θ^1(x1,x2,,xn)θ^2(x1,x2,,xn) ,根据贝努利大数定律,这些区间中大约有 100(1α) 的区间包含未知参数 θ
置信度表示区间估计的可靠度,置信度 1α 越接近于1越好。区间长度则表示估计的范围,即估计的精度,区间长度越短越好。当然,置信度和区间长度是相互矛盾的。在实际问题中,我们总是在保证可靠度的前提下,尽可能地提高精度。因此区间估计的问题,就是在给定 α 值的情况下,利用样本 (X1,X2,,Xn) 去求两个估计量 θ^1 θ^2 的问题。

置信区间的含义

α=0.01 为例,此时置信度为 99 。假设反复抽取样本1000次,则得到1000个随机区间 [T1,T2] ,在这1000个区间中,包含值的大约有990个,而不包含 θ 值的大约有10个。

构造区间估计的步骤

1.构造一个与 θ 有关的函数

{ UU

2.对给定的 α(0<α<1) ,求 a,b 使得
P{ aUb}=1α

3.解不等式 aUbT1θT2 ,得到区间 [T1,T2]

正态总体均值与方差的区间估计

ξN(a,σ2),ξ1,,ξn ξ 的一子样

单个总体 ξN(a,σ2) 的情形

σ2=σ20 已知时,求 a 的区间估计

因为 ξ¯ a 的最优无偏估计,因此在求 a 的区间估计时,自然从 ξ¯ 出发来构造一个适合的函数。因为

ξN(a,σ20)ξ¯N(a,σ20n)

U=ξ¯aσ0/n ,则 UN(0,1)
对给定的 α(0<α<1) ,求 uα ,使得
P{ |U|uα}=1α()

临界值 uα 可由 P{ Uuα}=1α2 ,查 N(01) 分布表得到
(*)式变为
P{ |ξ¯aσ/n|uα}=1α

亦是
P{ ξ¯uασ0naξ¯+uασ0n}=1α

因此 a 的置信水平为 1α 的区间估计为
[ξ¯uασ0n,ξ¯+uασ0n]

不同置信水平 1α 下, a 的区间估计为

这里写图片描述

例题

设某种清漆的9个样品,其干燥时间(以小时计)分别为 6.05.75.86.57.06.35.66.15.0 ,
设干燥时间总体服从正态分布 N(a,0.62) ,求a的置信
水平为 0.95 的置信区间。
解:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值