哈喽,我是我不是小upper~
之前分享过关于Pytorch的一些内容,包括一些核心的操作,今天把之前的进行一个优化和完善,大家感觉有用可以点击下方的链接看看。
对于初学者来说TensorFlow绝大多数觉得太难用,想要放弃,想要拜拜!其实,目前Pytorch已经是很好用了。它不仅提供了丰富且高效的操作接口,更以直观的设计降低了神经网络开发的门槛。因此完全可以作为初学者入门深度学习的框架来使用和学习。
为帮助大家系统且高效地掌握 PyTorch,后续我们将从多个维度展开深度分享,旨在为初学者打造一条快速入门的捷径,同时也为有经验的开发者提供全面的知识补充。本文作为开篇之作,将聚焦于 PyTorch 的基础操作,从以下 19 个核心方面进行详细拆解:
- 张量操作基石:创建张量、探索张量属性、掌握索引切片与拼接技巧,理解张量变换的核心逻辑。
- 数学运算体系:涵盖基础数学运算、汇总统计方法,深入解析梯度相关计算,夯实数值计算基础。
- 数据全流程管理:从数据的存储与加载,到高效的预处理与增广,确保数据以最佳状态服务模型训练。
- 神经网络核心模块:认识自动求导机制,熟悉各类神经网络模块,掌握损失函数与优化器的选择及配置。
- 模型生命周期管理:贯穿模型训练、验证、保存与加载全流程,了解 GPU 加速的实践技巧,探索模型调优与迁移学习的进阶策略。
上述每个方面又细分为70 个细节操作,从基础语法到高阶应用,每一个知识点都紧密围绕实际开发场景展开。建议各位在阅读后,抽出一天时间动手实践,通过亲自编写代码、调试运行,将理论知识转化为实践能力。相信通过这一阶段的扎实学习,后续在构建复杂神经网络、解决实际问题时,大家会更加得心应手,在深度学习的探索之路上迈出坚实的第一步。
创建张量
torch.tensor(data)
: 从数据创建张量
这个函数会根据提供的数据创建一个新的张量。数据可以是列表、数组等。
import torch
data = [1, 2, 3, 4, 5]
tensor_data = torch.tensor(data)
print(tensor_data)
torch.zeros(size)
: 创建元素全为0的张量
创建一个指定大小的张量,其中所有元素的值都为0。
import torch
size = (2, 3)
zeros_tensor = torch.zeros(size)
print(zeros_tensor)
torch.ones(size)
: 创建元素全为1的张量
创建一个指定大小的张量,其中所有元素的值都为1。
import torch
size = (2, 3)
ones_tensor = torch.ones(size)
print(ones_tensor)
torch.empty(size)
: 创建未初始化的张量
创建一个指定大小的未初始化张量,其值取决于内存的状态。
import torch
size = (2, 3)
empty_tensor = torch.empty(size)
print(empty_tensor)
torch.randn(size)
: 创建服从标准正态分布的张量
创建一个指定大小的张量,其中的元素值是从标准正态分布中随机抽取的。
import torch
size = (2, 3)
randn_tensor = torch.randn(size)
print(randn_tensor)
torch.arange(start, end, step)
: 创建一个范围内的一维张量
创建一个一维张量,其中的元素值从起始值到结束值,步长为给定的步长。
import torch
start = 0
end = 5
step = 1
arange_tensor = torch.arange(start, end, step)
print(arange_tensor)
torch.linspace(start, end, steps)
: 创建一个在指定范围内均匀间隔的张量
创建一个一维张量,其中的元素值在指定范围内均匀分布。
import torch
start = 0
end = 5
steps = 5
linspace_tensor = torch.linspace(start, end, steps)
print(linspace_tensor)
张量属性
.dtype
: 获取张量的数据类型
返回张量中元素的数据类型。
import torch
tensor = torch.tensor([1, 2, 3])
print(tensor.dtype)
.shape
: 获取张量的形状
返回一个元组,表示张量的形状。
import torch
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(tensor.shape)
.device
: 获取张量所在的设备
返回一个字符串,表示张量所在的设备,如'cpu'或'cuda:0'。
import torch
tensor = torch.tensor([1, 2, 3])
print(tensor.device)
张量索引、切片与拼接
tensor[index]
: 索引操作
使用索引来访问张量中的元素。
import torch
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
element = tensor[0, 1] # Accesses the element at row 0, column 1
print(element)
tensor[start:end]
: 切片操作
使用切片来获取张量的子张量。
import torch
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
sub_tensor = tensor[:, 1:] # Slices the tensor to get all rows and columns starting from the second column
print(sub_tensor)
torch.cat(tensors, dim)
: 在给定维度上连接张量
沿着指定维度将多个张量连接在一起。
import torch
tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6], [7, 8]])
concatenated_tensor = torch.cat((tensor1, tensor2), dim=0) # Concatenates along the row dimension
print(concatenated_tensor)
torch.stack(tensors, dim)
: 在新维度上堆叠张量
在一个新的维度上堆叠多个张量。
import torch
tensor1 = torch.tensor([1, 2, 3])
tensor2 = torch.tensor([4, 5, 6])
stacked_tensor = torch.stack((tensor1, tensor2), dim=1) # Stacks tensors along a new dimension
print(stacked_tensor)
张量变换
tensor.view(shape)
: 返回给定形状的张量视图
返回一个具有指定形状的新张量,原始张量的形状必须与新形状兼容。
import torch
tensor = torch.tensor([[1, 2], [3, 4]])
reshaped_tensor = tensor.view(1, 4) # Reshapes the tensor to a 1x4 tensor
print(reshaped_tensor)
tensor.reshape(shape)
: 改变张量的形状
返回一个具有指定形状的新张量,原始张量的元素数量必须与新形状一致。
import torch
tensor = torch.tensor([[1, 2], [3, 4]])
reshaped_tensor = tensor.reshape(1, 4) # Reshapes the tensor to a 1x4 tensor
print(reshaped_tensor)
tensor.transpose(dim0, dim1)
: 交换两个维度
交换张量中两个维度的位置。
import torch
tensor = torch.tensor([[1, 2], [3, 4]])
transposed_tensor = tensor.transpose(0, 1) # Swaps the first and second dimensions
print(transposed_tensor)
tensor.permute(*dims)
: 按照指定顺序排列张量的维度
按照给定顺序重新排列张量的维度。
import torch
tensor = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
permuted_tensor = tensor.permute(1, 0, 2) # Permutes the dimensions to (1, 0, 2)
print(permuted_tensor)
tensor.squeeze()
: 删除所有长度为1的维度
删除张量中所有长度为1的维度。
import torch
tensor = torch.tensor([[[1, 2], [3, 4]]])
squeezed_tensor = tensor.squeeze() # Removes the single-dimensional entries
print(squeezed_tensor)
tensor.unsqueeze(dim)
: 在指定位置增加一个维度
在指定位置增加一个长度为1的新维度。
import torch
tensor = torch.tensor([[1, 2], [3, 4]])
unsqueezed_tensor = tensor.unsqueeze(0) # Adds a dimension at index 0
print(unsqueezed_tensor)
数学运算
torch.add(x, y)
: 加法
对两个张量进行逐元素加法运算。
import torch
x = torch.tensor([1, 2, 3])
y = torch.tensor([4, 5, 6])
result = torch.add(x, y)
print(result)
torch.sub(x, y)
: 减法
对两个张量进行逐元素减法运算。
import torch
x = torch.tensor([1, 2, 3])
y = torch.tensor([4, 5, 6])
result = torch.sub(x, y)
print(result)
torch.mul(x, y)
: 乘法
对两个张量进行逐元素乘法运算。
import torch
x = torch.tensor([1, 2, 3])
y = torch.tensor([4, 5, 6])
result = torch.mul(x, y)
print(result)
torch.div(x, y)
: 除法
对两个张量进行逐元素除法运算。
import torch
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([4.0, 5.0, 6.0])
result = torch.div(x, y)
print(result)
torch.matmul(x, y)
: 矩阵乘法
计算两个张量的矩阵乘法。
import torch
x = torch.tensor([[1, 2], [3, 4]])
y = torch.tensor([[5, 6], [7, 8]])
result = torch.matmul(x, y)
print(result)
torch.pow(base, exponent)
: 幂运算
计算张量的幂。
import torch
base = torch.tensor([1, 2, 3])
exponent = 2
result = torch.pow(base, exponent)
print(result)
torch.exp(tensor)
: 指数运算
计算张量中所有元素的指数。
import torch
tensor = torch.tensor([1.0, 2.0, 3.0])
result = torch.exp(tensor)
print(result)
torch.sqrt(tensor)
: 开方运算
计算张量中所有元素的平方根。
import torch
tensor = torch.tensor([1.0, 4.0, 9.0])
result = torch.sqrt(tensor)
print(result)
汇总统计
torch.sum(input)
: 求和
计算张量中所有元素的和。
import torch
tensor = torch.tensor([[1, 2], [3, 4]])
result = torch.sum(tensor)
print(result)
torch.mean(input)
: 求平均值
计算张量中所有元素的平均值。
import torch
tensor = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
result = torch.mean(tensor)
print(result)
torch.max(input)
: 求最大值
找出张量中所有元素的最大值。
import torch
tensor = torch.tensor([[1, 2], [3, 4]])
result = torch.max(tensor)
print(result)
torch.min(input)
: 求最小值
找出张量中所有元素的最小值。
import torch
tensor = torch.tensor([[1, 2], [3, 4]])
result = torch.min(tensor)
print(result)
torch.std(input)
: 求标准差
计算张量中所有元素的标准差。
import torch
tensor = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
result = torch.std(tensor)
print(result)
torch.var(input)
: 求方差
计算张量中所有元素的方差。
import torch
tensor = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
result = torch.var(tensor)
print(result)
梯度相关
tensor.requires_grad_()
: 标记张量需要计算梯度
标记张量以便在反向传播中计算梯度。
import torch
tensor = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
tensor.grad
: 获取张量的梯度
获取张量的梯度值,前提是该张量需要计算梯度。
import torch
tensor = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
tensor.sum().backward()
print(tensor.grad)
tensor.backward()
: 计算梯度
计算张量的梯度值,前提是该张量需要计算梯度。
import torch
tensor = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
tensor.sum().backward()
数据管理
tensor.to(device)
: 将张量移动到指定的设备上(如GPU)
将张量移动到指定的设备上,例如GPU。
import torch
tensor = torch.tensor([1, 2, 3])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tensor = tensor.to(device)
print(tensor.device)
torch.save(obj, f)
: 保存对象到文件
将对象保存到文件中。
import torch
tensor = torch.tensor([1, 2, 3])
torch.save(tensor, 'tensor.pt') # Save tensor to file
torch.load(f)
: 从文件加载对象
从文件中加载对象。
import torch
tensor = torch.load('tensor.pt') # Load tensor from file
print(tensor)
其他操作基础操作
torch.nn.functional.relu(input)
: 应用ReLU激活函数
对输入张量应用ReLU激活函数。
import torch.nn.functional as F
import torch
input = torch.tensor([-1, 0, 1], dtype=torch.float)
output = F.relu(input)
print(output)
torch.nn.Conv2d(in_channels, out_channels, kernel_size)
: 创建二维卷积层
创建一个二维卷积层。
import torch.nn as nn
import torch
conv_layer = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3)
input = torch.randn(1, 3, 64, 64)
output = conv_layer(input)
print(output.shape)
torch.optim.SGD(params, lr)
: 使用SGD优化器
使用随机梯度下降(SGD)优化器来优化模型参数。
import torch.optim as optim
import torch
params = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
optimizer = optim.SGD([params], lr=0.1)
自动求导(Autograd)
自动求导是 PyTorch 中一个重要的功能,能够自动计算张量的梯度。
import torch
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = x ** 2
y.backward(torch.tensor([1.0, 1.0, 1.0])) # 计算 y 对 x 的梯度
print(x.grad) # 输出梯度值
神经网络模块(nn.Module)
使用 nn.Module 类来定义神经网络模型,可以方便地管理和组织模型的结构。
import torch.nn as nn
import torch
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc = nn.Linear(10, 1)
def forward(self, x):
return self.fc(x)
model = Net()
数据加载与处理(Data Loading and Processing)
使用 DataLoader 和 Dataset 类来加载和处理数据集。
import torch
from torch.utils.data import DataLoader, Dataset
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
data = [1, 2, 3, 4, 5]
dataset = CustomDataset(data)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
损失函数(Loss Functions)
使用损失函数来衡量模型输出与真实标签之间的差异。
import torch.nn as nn
import torch
criterion = nn.CrossEntropyLoss()
output = torch.tensor([[0.1, 0.2, 0.7], [0.3, 0.6, 0.1]])
target = torch.tensor([2, 1])
loss = criterion(output, target)
print(loss)
优化器(Optimizers)
使用优化器来更新模型的参数,常见的优化器包括 SGD、Adam 等。
import torch.optim as optim
import torch
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
模型训练与验证(Model Training and Validation)
使用 PyTorch 来训练和验证神经网络模型。
import torch.nn as nn
import torch.optim as optim
import torch
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
for epoch in range(10):
# 训练模型
for data in dataloader:
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 验证模型
with torch.no_grad():
# 计算准确率等指标
模型保存与加载(Model Saving and Loading)
在训练完成后,将模型保存到文件中以便后续使用。
import torch
torch.save(model.state_dict(), 'model.pth') # 保存模型参数
GPU 加速(GPU Acceleration)
利用 GPU 加速计算可以显著提高模型训练的速度。
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device) # 将模型移动到 GPU 上
模型调优(Model Tuning)
使用交叉验证和超参数搜索来调优模型,以提高模型性能。
from sklearn.model_selection import GridSearchCV
import torch
parameters = {'lr': [0.01, 0.1, 1.0]}
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
grid_search = GridSearchCV(optimizer, parameters)
迁移学习(Transfer Learning)
迁移学习是一种常见的训练技巧,可以使用预训练的模型来加速模型的训练过程。
import torchvision.models as models
import torch
pretrained_model = models.resnet18(pretrained=True)
# 将预训练模型的参数冻结
for param in pretrained_model.parameters():
param.requires_grad = False