Largest Point

Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1274    Accepted Submission(s): 502

Problem Description
Given the sequence A with n integers t1,t2,,tn. Given the integral coefficients a and b. The fact that select two elements ti and tj of A and ij to maximize the value of at2i+btj, becomes the largest point.

Input
An positive integer T, indicating there are T test cases.
For each test case, the first line contains three integers corresponding to n (2n5×106), a (0|a|106) and b (0|b|106). The second line contains nintegers t1,t2,,tn where 0|ti|106 for 1in.

The sum of n for all cases would not be larger than 5×106.

Output
The output contains exactly T lines.
For each test case, you should output the maximum value of at2i+btj.

Sample Input
2 3 2 1 1 2 3 5 -1 0 -3 -3 0 3 3

Sample Output
Case #1: 20 Case #2: 0

Source

AC code:

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;

const int maxn = 5 * 100000 + 10;
const long long inf = 1e18;

struct point
{
int pos;
long long value;
}c[maxn],d[maxn];

bool cmp(struct point a,struct point b)
{
return a.value > b.value;
}

int main()
{
int T;
int n,a,b;
long long num,i;
int cnt = 0;
scanf("%d",&T);
while(T--)
{
cnt++;
scanf("%d%d%d",&n,&a,&b);
for(i=0;i<n;i++)
{
scanf("%lld",&num);
c[i].pos = i;
d[i].pos = i;
c[i].value = a * num * num;
d[i].value = b * num;
}
sort(c,c+n,cmp);
sort(d,d+n,cmp);
long long temp1 = c[0].value;
long long temp2 = d[0].value;
long long temp3 = c[1].value;
long long temp4 = d[1].value;
printf("Case #%d: ",cnt);
if(c[0].pos != d[0].pos)
{
printf("%lld\n",temp1 + temp2);
}
else
{
long long Max = -inf;
if(temp1 + temp4 > Max)
{
Max = temp1 + temp4;
}
if(temp2 + temp3 > Max)
{
Max = temp2 + temp3;
}
printf("%lld\n",Max);
}
}
return 0;
}