【视频解读】动手学深度学习V2_01课程介绍

1.概述

image-20230504151118623

  1. 这门课程主要介绍深度学习经典和最新模型。从最简单、最老的80年代的Lenet,讲到计算机视觉比较流行的Resnet,以及经典的时序模型LSTM以及最近比较流行的BERT。
  2. 当然我们在讲深度学习时,我们离不开机器学习,机器学习的很多基础知识是我们需要的,比如
    • 损失函数,目标函数,过拟合和优化等
  3. 实践
    • 不仅会讲原理和数学表示,而且使用Pytorch实现介绍的知识点。
    • 在真实数据上体验算法效果。

2.内容介绍

在这里插入图片描述

  1. 首先讲一下深度学习基础,大家不需要有机器学习或者深度学习的背景,我们会从头开始讲起。
  2. 接下来会进入深度学习的核心之一:卷积神经网络,我们从最早的Lenet开始,以及引起深度学习狂潮的Alexnet、VGG、Inception和Resnet等。
  3. 卷积神经网络是一个空间的神经网络,循环神经网络是时间上的神经网络,从RNN开始,到新的Seq2Seq。
  4. 在卷积神经网络和循环神经网络之后,注意力机制Attention是最近几年新出来的一个种类,在自然语言处理以及之外的领域都有广泛的应用。
  5. 当然也会介绍机器学习的基础,也就是优化算法,也就是给定模型,如何来得到你的网络。
  6. 因为深度学习计算量比较大,需要很多的机器来跑,是一个大力出奇迹的领域,所以也会介绍如何进行高性能的计算,怎么并行,怎么多GPU以及如何分布式。
  7. 最后我们会介绍两大领域,1.计算机视觉(包括目标检测,语义分割),2.自然语言处理(词嵌入,BERT)。不管是深度学习也好,人工智能也好,这是最主要的两大领域。
    在这里插入图片描述

在这里插入图片描述

  1. 深度学习有那些技术。
  2. 如何实现和调参。
  3. 背后的背景(直觉、数学)。
    image-20230504155106441
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无敌三角猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值