R 语言(未完待续)一元线性回归分析

  • 原理,最小二乘法
  • 步骤:建立回归模型,求解回归模型中的参数,对回归模型进行检验
  • 例子
  • 数据:身高-体重
> h=c(171,175,159,155,152,158,154,164,168,166,159,164)
> w=c(57,64,41,38,35,44,41,51,57,49,47,46)
> plot(w~h+1)

这里写图片描述

自定义函数

> lxy<-function(x,y){n=length(x);sum(x*y)-sum(x)*sum(y)/n}
> b=lxy(h,w)/lxy(h,h)
> a=mean(w)-b*mean(h)
> b
[1] 1.15906
> a
[1] -140.3644
> lines(h,a+b*h)

这里写图片描述

建立线性模型

> h=c(171,175,159,155,152,158,154,164,168,166,159,164)
> length(h)
[1] 12
> w=c(57,64,41,38,35,44,41,51,57,49,47,46)
> length(w)
[1] 12
> a=lm(w~1+h)
> a

Call:
lm(formula = w ~ 1 + h)

Coefficients:
(Intercept)            h  
   -140.364        1.159  

lm()线性模型函数
适用于多元线性模型的基本函数是lm(),其调用形式是

fitted.model<-lm(formula,data=data.frame)

其中formula 为模型公式.data.frame 为数据框。返回值为线性模型结果的对象放在fitted.model中,例如:

fm2<-lm(y ~ x1+x2,data=production)
适用于y关于x1和x2 的多元回归模型(隐含着截距项)。
y~1+x或y~x 均表示y=a+bx 有截距形式的线性模型


这里写图片描述

线性模型的汇总数据,t检验,summary()函数

> summary(a)

Call:
lm(formula = w ~ 1 + h)

Residuals:
   Min     1Q Median     3Q    Max 
-3.721 -1.699  0.210  1.807  3.074 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -140.3644    17.5026   -8.02 1.15e-05 ***
h              1.1591     0.1079   10.74 8.21e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.546 on 10 degrees of freedom
Multiple R-squared:  0.9203,    Adjusted R-squared:  0.9123 
F-statistic: 115.4 on 1 and 10 DF,  p-value: 8.21e-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值