引言
惯性测量单元(IMU)通过集成加速度计、陀螺仪和磁力计等传感器,能够实时测量载体的姿态信息。然而,由于传感器本身的噪声和漂移,直接使用这些数据进行姿态解算会导致误差累积。因此,需要采用滤波算法来融合多传感器数据,提高姿态解算的精度和稳定性。
四元数姿态解算基础
四元数是一种用于表示三维旋转的数学工具,具有计算量小、无奇异性等优点,非常适合用于姿态解算。四元数由四个元素组成,通常表示为q = [q0, q1, q2, q3],其中q0为实部,q1、q2、q3为虚部。
姿态解算的目标是根据传感器的测量数据,实时更新四元数,从而得到载体的姿态角(俯仰角、滚转角和航向角)。这通常通过四元数微分方程来实现,即:
q̇ = 0.5 * Ω * q
其中,Ω为由陀螺仪测量得到的角速度构成的反对称矩阵,q为当前姿态四元数,q̇为四元数的导数。
互补滤波算法
互补滤波算法是一种简单有效的传感器数据融合方法,通过结合加速度计的稳定性来修正陀螺仪的积分漂移误差。具体实现过程如下:
加速度计数据归一化:
将加速度计测量得到的三轴加速度数据进行归一化处理,得到单位重力加速度向量。
计算误差:
将单位重力加速度向量从导航坐标系(通常为地理坐标系)旋转到载体坐标系,并与载体坐标系中的加速度计输出进行叉乘运算,得到误差向量。
误差补偿:
将误差向量乘以比例系数(即加速度权重),并加到陀螺仪的测量值上,从而修正陀螺仪的积分漂移误差。
四元数更新:
使用修正后的陀螺仪测量值更新四元数,并进行归一化处理。
计算姿态角:
根据更新后的四元数,计算载体的俯仰角、滚转角和航向角。
C语言实现实例
以下是一个基于四元数的互补滤波算法的C语言实现实例:
#include <math.h>
#include <stdio.h>
// 定义四元数结构体
typedef struct {
float q0, q1, q2, q3;
} Quat;
// 定义传感器数据结构体
typedef struct {
float gx, gy, gz; // 陀螺仪测量值
float ax, ay, az; // 加速度计测量值
} SensorData;
// 互补滤波算法参数
#define Kp 0.2f // 加速度权重
#define Ki 0.001f // 误差积分增益
#define DT 0.01f // 采样时间间隔
// 四元数归一化函数
void normalizeQuat(Quat *q) {
float norm = sqrtf(q->q0 * q->q0 + q->q1 * q->q1 + q->q2 * q->q2 + q->q3 * q->q3);
q->q0 /= norm;
q->q1 /= norm;
q->q2 /= norm;
q->q3 /= norm;
}
// 四元数更新函数
void updateQuat(Quat *q, SensorData *data) {
float norm, vx, vy, vz, ex, ey, ez;
float exInt, eyInt, ezInt;
// 加速度计数据归一化
norm = sqrtf(data->ax * data->ax + data->ay * data->ay + data->az * data->az);
data->ax /= norm;
data->ay /= norm;
data->az /= norm;
// 计算载体坐标系中的重力加速度向量
vx = 2 * (q->q1 * q->q3 - q->q0 * q->q2);
vy = 2 * (q->q0 * q->q1 + q->q2 * q->q3);
vz = q->q0 * q->q0 - q->q1 * q->q1 - q->q2 * q->q2 + q->q3 * q->q3;
// 计算误差向量
ex = (data->ay * vz - data->az * vy);
ey = (data->az * vx - data->ax * vz);
ez = (data->ax * vy - data->ay * vx);
// 误差积分
static float exInt_prev = 0, eyInt_prev = 0, ezInt_prev = 0;
exInt = exInt_prev + ex * Ki * DT;
eyInt = eyInt_prev + ey * Ki * DT;
ezInt = ezInt_prev + ez * Ki * DT;
exInt_prev = exInt;
eyInt_prev = eyInt;
ezInt_prev = ezInt;
// 陀螺仪积分融合
float gx_corr = data->gx + Kp * ex + exInt;
float gy_corr = data->gy + Kp * ey + eyInt;
float gz_corr = data->gz + Kp * ez + ezInt;
// 更新四元数
float q0_dot = -q->q1 * gx_corr - q->q2 * gy_corr - q->q3 * gz_corr;
float q1_dot = q->q0 * gx_corr + q->q2 * gz_corr - q->q3 * gy_corr;
float q2_dot = q->q0 * gy_corr - q->q1 * gz_corr + q->q3 * gx_corr;
float q3_dot = q->q0 * gz_corr + q->q1 * gy_corr - q->q2 * gx_corr;
q->q0 += q0_dot * DT * 0.5f;
q->q1 += q1_dot * DT * 0.5f;
q->q2 += q2_dot * DT * 0.5f;
q->q3 += q3_dot * DT * 0.5f;
// 四元数归一化
normalizeQuat(q);
}
// 计算姿态角函数
void calculateAngles(Quat *q, float *roll, float *pitch, float *yaw) {
*roll = -asinf(-2 * q->q1 * q->q3 + 2 * q->q0 * q->q2) * 180 / 3.1415926;
*pitch = atan2f(2 * q->q1 * q->q2 + 2 * q->q0 * q->q3, 1 - 2 * q->q1 * q->q1 - 2 * q->q2 * q->q2) * 180 / 3.1415926;
*yaw = atan2f(2 * q->q1 * q->q0 - 2 * q->q2 * q->q3, 1 - 2 * q->q1 * q->q1 - 2 * q->q3 * q->q3) * 180 / 3.1415926;
}
四元数互补滤波算法C语言实现
5万+





