IMU姿态估计中的四元数更新算法及欧拉角转换方法详解

基于四元数的IMU姿态更新算法详解与计算实例

四元数(Quaternion)是一种在三维空间中表示旋转的数学工具,广泛应用于惯性测量单元(IMU, Inertial Measurement Unit)中的姿态估计。与欧拉角和旋转矩阵相比,四元数具有避免万向锁(Gimbal Lock)和计算效率高的优点。本文将详细讲解基于四元数的IMU姿态更新算法,并通过一个具体的计算实例进行说明。
四元数(Quaternion)的旋转示意图

一、四元数基础

四元数由一个实部和三个虚部组成,通常表示为:

q = q 0 + q 1 i + q 2 j + q 3 k q = q_0 + q_1i + q_2j + q_3k q=q0+q1i+q2j+q3k

其中, q 0 q_0 q0 为实部, q 1 , q 2 , q 3 q_1, q_2, q_3 q1,q2,q3 为虚部。四元数具有以下几个重要性质:

  1. 单位四元数:用于表示旋转时,四元数通常为单位四元数,即:

    q 0 2 + q 1 2 + q 2 2 + q 3 2 = 1 q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1 q02+q12+q22+q32=1

  2. 四元数的乘法:用于组合旋转。

  3. 四元数的共轭

    q ∗ = q 0 − q 1 i − q 2 j − q 3 k q^* = q_0 - q_1i - q_2j - q_3k q=q0q1iq2jq3k

二、IMU姿态估计概述

IMU通常由加速度计、陀螺仪和磁力计组成。姿态估计的目标是确定IMU相对于参考坐标系(如地面)的方向。基于四元数的姿态更新算法主要利用陀螺仪的角速度信息,通过积分来更新当前的姿态四元数。

三、基于四元数的IMU姿态更新算法

姿态更新的核心步骤包括:

  1. 获取陀螺仪数据:测量当前的角速度 ω = [ ω x , ω y , ω z ] T \omega = [\omega_x, \omega_y, \omega_z]^T ω=[ωx,ωy,ωz]T(单位为弧度/秒)。

  2. 计算四元数的导数:四元数的时间导数与角速度的关系为:

    d q d t = 1 2 q ⊗ ω q \frac{dq}{dt} = \frac{1}{2} q \otimes \omega_q dtdq=21qωq

    其中, ω q = 0 + ω x i + ω y j + ω z k \omega_q = 0 + \omega_x i + \omega_y j + \omega_z k ωq=0+ωxi+ωyj+ωzk ⊗ \otimes 表示四元数的乘法。

  3. 数值积分:利用如欧拉法、四阶龙格-库塔法(RK4)等数值积分方法,更新四元数:

    q ( t + Δ t ) = q ( t ) + d q d t Δ t q(t + \Delta t) = q(t) + \frac{dq}{dt} \Delta t q(t+Δt)=q(t)+dtdqΔt

  4. 归一化四元数:由于数值积分可能引入误差,需对四元数进行归一化:

    q new = q ( t + Δ t ) ∥ q ( t + Δ t ) ∥ q_{\text{new}} = \frac{q(t + \Delta t)}{\| q(t + \Delta t) \|} qnew=q(t+Δt)q(t+Δt)

四、计算实例

假设我们有一个IMU,在初始时刻姿态为单位四元数 q 0 = [ 1 , 0 , 0 , 0 ] T q_0 = [1, 0, 0, 0]^T q0=[1,0,0,0]T,陀螺仪测得的角速度为 ω = [ 0.1 , 0.2 , 0.3 ] \omega = [0.1, 0.2, 0.3] ω=[0.1,0.2,0.3] 弧度/秒,时间步长为 Δ t = 0.1 \Delta t = 0.1 Δt=0.1 秒。我们将使用欧拉法进行四元数的更新。

步骤1:初始四元数

q ( t ) = q 0 = [ q 0 , q 1 , q 2 , q 3 ] T = [ 1 , 0 , 0 , 0 ] T q(t) = q_0 = [q_0, q_1, q_2, q_3]^T = [1, 0, 0, 0]^T q(t)=q0=[q0,q1,q2,q3]T=[1,0,0,0]T

步骤2:构造 ω q \omega_q ωq

ω q = [ 0 , ω x , ω y , ω z ] T = [ 0 , 0.1 , 0.2 , 0.3 ] T \omega_q = [0, \omega_x, \omega_y, \omega_z]^T = [0, 0.1, 0.2, 0.3]^T ωq=[0,ωx,ωy,ωz]T=[0,0.1,0.2,0.3]T

步骤3:计算四元数的导数

四元数乘法 q ⊗ ω q q \otimes \omega_q qωq

q ⊗ ω q = [ q 0 ⋅ 0 − q 1 ⋅ 0.1 − q 2 ⋅ 0.2 − q 3 ⋅ 0.3 q 0 ⋅ 0.1 + q 1 ⋅ 0 + q 2 ⋅ 0.3 − q 3 ⋅ 0.2 q 0 ⋅ 0.2 − q 1 ⋅ 0.3 + q 2 ⋅ 0 + q 3 ⋅ 0.1 q 0 ⋅ 0.3 + q 1 ⋅ 0.2 − q 2 ⋅ 0.1 + q 3 ⋅ 0 ] q \otimes \omega_q = \begin{bmatrix} q_0 \cdot 0 - q_1 \cdot 0.1 - q_2 \cdot 0.2 - q_3 \cdot 0.3 \\ q_0 \cdot 0.1 + q_1 \cdot 0 + q_2 \cdot 0.3 - q_3 \cdot 0.2 \\ q_0 \cdot 0.2 - q_1 \cdot 0.3 + q_2 \cdot 0 + q_3 \cdot 0.1 \\ q_0 \cdot 0.3 + q_1 \cdot 0.2 - q_2 \cdot 0.1 + q_3 \cdot 0 \end{bmatrix} qωq= q00q10.1q20.2q30.3q00.1+q10+q20.3q30.2q00.2q10.3+q20+q30.1q00.3+q10.2q20.1+q30

代入初始四元数 q = [ 1 , 0 , 0 , 0 ] T q = [1, 0, 0, 0]^T q=[1,0,0,0]T

q ⊗ ω q = [ 0 − 0 − 0 − 0 = 0 1 ⋅ 0.1 + 0 + 0 ⋅ 0.3 − 0 ⋅ 0.2 = 0.1 1 ⋅ 0.2 − 0 ⋅ 0.3 + 0 ⋅ 0 + 0 ⋅ 0.1 = 0.2 1 ⋅ 0.3 + 0 ⋅ 0.2 − 0 ⋅ 0.1 + 0 ⋅ 0 = 0.3 ] = [ 0 , 0.1 , 0.2 , 0.3 ] T q \otimes \omega_q = \begin{bmatrix} 0 - 0 - 0 - 0 = 0 \\ 1 \cdot 0.1 + 0 + 0 \cdot 0.3 - 0 \cdot 0.2 = 0.1 \\ 1 \cdot 0.2 - 0 \cdot 0.3 + 0 \cdot 0 + 0 \cdot 0.1 = 0.2 \\ 1 \cdot 0.3 + 0 \cdot 0.2 - 0 \cdot 0.1 + 0 \cdot 0 = 0.3 \end{bmatrix} = [0, 0.1, 0.2, 0.3]^T qωq= 0000=010.1+0+00.300.2=0.110.200.3+00+00.1=0.210.3+00.200.1+00=0.3 =[0,0.1,0.2,0.3]T

四元数的导数:

d q d t = 1 2 [ 0 , 0.1 , 0.2 , 0.3 ] T = [ 0 , 0.05 , 0.1 , 0.15 ] T \frac{dq}{dt} = \frac{1}{2} [0, 0.1, 0.2, 0.3]^T = [0, 0.05, 0.1, 0.15]^T dtdq=21[0,0.1,0.2,0.3]T=[0,0.05,0.1,0.15]T

步骤4:数值积分(欧拉法)

更新四元数:

q ( t + Δ t ) = q ( t ) + d q d t ⋅ Δ t = [ 1 , 0 , 0 , 0 ] T + [ 0 , 0.05 , 0.1 , 0.15 ] T ⋅ 0.1 = [ 1 , 0.005 , 0.01 , 0.015 ] T q(t + \Delta t) = q(t) + \frac{dq}{dt} \cdot \Delta t = [1, 0, 0, 0]^T + [0, 0.05, 0.1, 0.15]^T \cdot 0.1 = [1, 0.005, 0.01, 0.015]^T q(t+Δt)=q(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值