基于四元数的IMU姿态更新算法详解与计算实例
四元数(Quaternion)是一种在三维空间中表示旋转的数学工具,广泛应用于惯性测量单元(IMU, Inertial Measurement Unit)中的姿态估计。与欧拉角和旋转矩阵相比,四元数具有避免万向锁(Gimbal Lock)和计算效率高的优点。本文将详细讲解基于四元数的IMU姿态更新算法,并通过一个具体的计算实例进行说明。
一、四元数基础
四元数由一个实部和三个虚部组成,通常表示为:
q = q 0 + q 1 i + q 2 j + q 3 k q = q_0 + q_1i + q_2j + q_3k q=q0+q1i+q2j+q3k
其中, q 0 q_0 q0 为实部, q 1 , q 2 , q 3 q_1, q_2, q_3 q1,q2,q3 为虚部。四元数具有以下几个重要性质:
-
单位四元数:用于表示旋转时,四元数通常为单位四元数,即:
q 0 2 + q 1 2 + q 2 2 + q 3 2 = 1 q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1 q02+q12+q22+q32=1
-
四元数的乘法:用于组合旋转。
-
四元数的共轭:
q ∗ = q 0 − q 1 i − q 2 j − q 3 k q^* = q_0 - q_1i - q_2j - q_3k q∗=q0−q1i−q2j−q3k
二、IMU姿态估计概述
IMU通常由加速度计、陀螺仪和磁力计组成。姿态估计的目标是确定IMU相对于参考坐标系(如地面)的方向。基于四元数的姿态更新算法主要利用陀螺仪的角速度信息,通过积分来更新当前的姿态四元数。
三、基于四元数的IMU姿态更新算法
姿态更新的核心步骤包括:
-
获取陀螺仪数据:测量当前的角速度 ω = [ ω x , ω y , ω z ] T \omega = [\omega_x, \omega_y, \omega_z]^T ω=[ωx,ωy,ωz]T(单位为弧度/秒)。
-
计算四元数的导数:四元数的时间导数与角速度的关系为:
d q d t = 1 2 q ⊗ ω q \frac{dq}{dt} = \frac{1}{2} q \otimes \omega_q dtdq=21q⊗ωq
其中, ω q = 0 + ω x i + ω y j + ω z k \omega_q = 0 + \omega_x i + \omega_y j + \omega_z k ωq=0+ωxi+ωyj+ωzk, ⊗ \otimes ⊗ 表示四元数的乘法。
-
数值积分:利用如欧拉法、四阶龙格-库塔法(RK4)等数值积分方法,更新四元数:
q ( t + Δ t ) = q ( t ) + d q d t Δ t q(t + \Delta t) = q(t) + \frac{dq}{dt} \Delta t q(t+Δt)=q(t)+dtdqΔt
-
归一化四元数:由于数值积分可能引入误差,需对四元数进行归一化:
q new = q ( t + Δ t ) ∥ q ( t + Δ t ) ∥ q_{\text{new}} = \frac{q(t + \Delta t)}{\| q(t + \Delta t) \|} qnew=∥q(t+Δt)∥q(t+Δt)
四、计算实例
假设我们有一个IMU,在初始时刻姿态为单位四元数 q 0 = [ 1 , 0 , 0 , 0 ] T q_0 = [1, 0, 0, 0]^T q0=[1,0,0,0]T,陀螺仪测得的角速度为 ω = [ 0.1 , 0.2 , 0.3 ] \omega = [0.1, 0.2, 0.3] ω=[0.1,0.2,0.3] 弧度/秒,时间步长为 Δ t = 0.1 \Delta t = 0.1 Δt=0.1 秒。我们将使用欧拉法进行四元数的更新。
步骤1:初始四元数
q ( t ) = q 0 = [ q 0 , q 1 , q 2 , q 3 ] T = [ 1 , 0 , 0 , 0 ] T q(t) = q_0 = [q_0, q_1, q_2, q_3]^T = [1, 0, 0, 0]^T q(t)=q0=[q0,q1,q2,q3]T=[1,0,0,0]T
步骤2:构造 ω q \omega_q ωq
ω q = [ 0 , ω x , ω y , ω z ] T = [ 0 , 0.1 , 0.2 , 0.3 ] T \omega_q = [0, \omega_x, \omega_y, \omega_z]^T = [0, 0.1, 0.2, 0.3]^T ωq=[0,ωx,ωy,ωz]T=[0,0.1,0.2,0.3]T
步骤3:计算四元数的导数
四元数乘法 q ⊗ ω q q \otimes \omega_q q⊗ωq:
q ⊗ ω q = [ q 0 ⋅ 0 − q 1 ⋅ 0.1 − q 2 ⋅ 0.2 − q 3 ⋅ 0.3 q 0 ⋅ 0.1 + q 1 ⋅ 0 + q 2 ⋅ 0.3 − q 3 ⋅ 0.2 q 0 ⋅ 0.2 − q 1 ⋅ 0.3 + q 2 ⋅ 0 + q 3 ⋅ 0.1 q 0 ⋅ 0.3 + q 1 ⋅ 0.2 − q 2 ⋅ 0.1 + q 3 ⋅ 0 ] q \otimes \omega_q = \begin{bmatrix} q_0 \cdot 0 - q_1 \cdot 0.1 - q_2 \cdot 0.2 - q_3 \cdot 0.3 \\ q_0 \cdot 0.1 + q_1 \cdot 0 + q_2 \cdot 0.3 - q_3 \cdot 0.2 \\ q_0 \cdot 0.2 - q_1 \cdot 0.3 + q_2 \cdot 0 + q_3 \cdot 0.1 \\ q_0 \cdot 0.3 + q_1 \cdot 0.2 - q_2 \cdot 0.1 + q_3 \cdot 0 \end{bmatrix} q⊗ωq= q0⋅0−q1⋅0.1−q2⋅0.2−q3⋅0.3q0⋅0.1+q1⋅0+q2⋅0.3−q3⋅0.2q0⋅0.2−q1⋅0.3+q2⋅0+q3⋅0.1q0⋅0.3+q1⋅0.2−q2⋅0.1+q3⋅0
代入初始四元数 q = [ 1 , 0 , 0 , 0 ] T q = [1, 0, 0, 0]^T q=[1,0,0,0]T:
q ⊗ ω q = [ 0 − 0 − 0 − 0 = 0 1 ⋅ 0.1 + 0 + 0 ⋅ 0.3 − 0 ⋅ 0.2 = 0.1 1 ⋅ 0.2 − 0 ⋅ 0.3 + 0 ⋅ 0 + 0 ⋅ 0.1 = 0.2 1 ⋅ 0.3 + 0 ⋅ 0.2 − 0 ⋅ 0.1 + 0 ⋅ 0 = 0.3 ] = [ 0 , 0.1 , 0.2 , 0.3 ] T q \otimes \omega_q = \begin{bmatrix} 0 - 0 - 0 - 0 = 0 \\ 1 \cdot 0.1 + 0 + 0 \cdot 0.3 - 0 \cdot 0.2 = 0.1 \\ 1 \cdot 0.2 - 0 \cdot 0.3 + 0 \cdot 0 + 0 \cdot 0.1 = 0.2 \\ 1 \cdot 0.3 + 0 \cdot 0.2 - 0 \cdot 0.1 + 0 \cdot 0 = 0.3 \end{bmatrix} = [0, 0.1, 0.2, 0.3]^T q⊗ωq= 0−0−0−0=01⋅0.1+0+0⋅0.3−0⋅0.2=0.11⋅0.2−0⋅0.3+0⋅0+0⋅0.1=0.21⋅0.3+0⋅0.2−0⋅0.1+0⋅0=0.3 =[0,0.1,0.2,0.3]T
四元数的导数:
d q d t = 1 2 [ 0 , 0.1 , 0.2 , 0.3 ] T = [ 0 , 0.05 , 0.1 , 0.15 ] T \frac{dq}{dt} = \frac{1}{2} [0, 0.1, 0.2, 0.3]^T = [0, 0.05, 0.1, 0.15]^T dtdq=21[0,0.1,0.2,0.3]T=[0,0.05,0.1,0.15]T
步骤4:数值积分(欧拉法)
更新四元数:
q ( t + Δ t ) = q ( t ) + d q d t ⋅ Δ t = [ 1 , 0 , 0 , 0 ] T + [ 0 , 0.05 , 0.1 , 0.15 ] T ⋅ 0.1 = [ 1 , 0.005 , 0.01 , 0.015 ] T q(t + \Delta t) = q(t) + \frac{dq}{dt} \cdot \Delta t = [1, 0, 0, 0]^T + [0, 0.05, 0.1, 0.15]^T \cdot 0.1 = [1, 0.005, 0.01, 0.015]^T q(t+Δt)=q(