【Tensorflow】tf.sets.set_intersection

import tensorflow as tf
import collections

# Represent the following array of sets as a sparse tensor:
# a = np.array([[{1, 2}, {3}], [{4}, {5, 6}]])
a = collections.OrderedDict([
    ((0, 0, 0), 1),
    ((0, 0, 1), 2),
    ((0, 1, 0), 3),
    ((1, 0, 0), 4),
    ((1, 1, 0), 5),
    ((1, 1, 1), 6),
])
a = tf.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2,2,2])

# b = np.array([[{1}, {}], [{4}, {5, 6, 7, 8}]])
b = collections.OrderedDict([
    ((0, 0, 0), 1),
    ((1, 0, 0), 4),
    ((1, 1, 0), 5),
    ((1, 1, 1), 6),
    ((1, 1, 2), 7),
    ((1, 1, 3), 8),
])
b = tf.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4])

# `tf.sets.set_intersection` is applied to each aligned pair of sets.
c = tf.sets.set_intersection(a, b)

sess = tf.Session()

print(sess.run(c))

结果为

SparseTensorValue(indices=array([[0, 0, 0],
       [1, 0, 0],
       [1, 1, 0],
       [1, 1, 1]], dtype=int64), values=array([1, 4, 5, 6]), dense_shape=array([2, 2, 2], dtype=int64))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值