Imagenet的std mean值(均值,归一化)

1)常用的一种归一化

imagenet的 RGB模式

              std标准差:[0.229, 0.224, 0.225]

              mean均值:[0.485, 0.456, 0.406]

new_img = img / 255.

std = [0.229, 0.224, 0.225]
mean = [0.485, 0.456, 0.406]

_std = np.array(std).reshape((1,1,3))
_mean = np.array(mean).reshape((1,1,3))

new_img = (new_img - _mean) / _std

2)有一种就是如下所示的归一化

_MEAN_RGB = [123.15, 115.90, 103.06]
def _preprocess_subtract_imagenet_mean(inputs):
    """Subtract Imagenet mean RGB value."""
    mean_rgb = tf.reshape(_MEAN_RGB, [1, 1, 1, 3])
    print("mean_rgb:\n", mean_rgb)
    return inputs - mean_rgb

inputs = tf.random.uniform(shape=[2, 448, 448, 3], maxval=255)
print("inputs:\n", inputs)
imgs_new = _preprocess_subtract_imagenet_mean(inputs)
print("imgs_sub:\n", imgs_new)

 

  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值