图像处理评价指标之模糊度
图像和视频在采集、压缩、传输、存储过程中,无可避免地会引入失真。模糊失真是图像、视频质量下降最主要的因素之一,研究图像模糊度评价方法有非常重要的意义。通过对模糊失真进行评测和度量,可以对整个图像传输或处理系统的质量进行监控,进而采取措施提高系统性能
模糊度和清晰度概念
图像模糊是一种很重要的图像降质因素,在图像获取、传输、处理过程中都有很多因素可能造成图像模糊,比如在获取图像时,不正确的聚焦会产生离焦模糊,景物和照相机的相对运动会造成运动模糊,图像压缩后的高频丢失造成的模糊。模糊降低了图像的清晰度,严重影响图像质量,导致图像分析、处理、接收的困难甚至失败,因此必须要使用有效的模糊评价方法来控制模糊图像的使用,
从而提高系统整体性能。
模糊度和清晰度是描述图像清晰程度(模糊程度)的两个相对但又相互联系的两个概念。图像越清晰,质量越高,清晰度越大,模糊度越小;图像越不清晰(越模糊),质量越低,清晰度越小,模糊度越大。因此描述一幅图像清晰程度时,既可以使用清晰度也可以使用模糊度,只是两个指标数值上成反比;本文采用模图像模糊度评价研究模糊度来描述。
客观评价也可以根据对参考图像的依赖程度分为:全参考图像模糊度评价(Full Reference Image Blur Assessment,FR-IBA)、部分参考图像模糊度评价(Reduced Reference Image Blur Assessment,RR-IBA)、无参考图像模糊度评价(No Reference Image Blur Assessment,NR-IBA)。客观模糊度评价的方法也可以参考客观图像质量评价的方法,但由于只关注模糊度一个指标,在算法设计时更有针对性,应该把重点放在模糊特征参量的提取上。
模糊度评价算法可以分成几个较大的类别,(1)基于像素的技术,包括分析像素灰度值的统计特性以及像素之间的相关性;(2)基于变换域的技术,这利用了在变换域高频成分越多图像越清晰,高频成分越少图像越模糊的原理;(3)基于图像梯度的技术,它利用图像边缘的梯度来衡量图像模糊程度,梯度越大图像越清晰。另外,也有较少的算法是基于直方图。
参考
图像全参考客观评价算法比较
https://blog.csdn.net/leixiaohua1020/article/details/38324973
评估图像质量评价算法性能的几个常用的标准
https://blog.csdn.net/caoleiwe/article/details/49045633
两种常用的全参考图像质量评价指标–PSNR和SSIM
https://blog.csdn.net/zjyruobing/article/details/49908979
图像质量评价之衡量标准
https://blog.csdn.net/lanmengyiyu/article/details/53322955
图像评价指标
https://blog.csdn.net/purgle/article/details/73719101
图像质量评价标准简介
https://www.jianshu.com/p/b12dc6d634c1
图像评价指标及方法(更偏向于图像效果评价)
https://blog.csdn.net/ddreaming/article/details/52422376
客观评价方法(MSE、PSNR和IMSE)