导数的概念

马同学:https://www.zhihu.com/question/28684811

这篇博客并没有让我明白什么是导数,现阶段我只能强行记住:导数是与变元个数相关的,变元的个数会构成不同维度的空间,一个变元就是一元函数,构成了一维空间,那么这个空间中某一点的导数只能取得左右两个方向,就是我们常说的左导数和右导数,如果左右导数相等且该点的函数值能取得,则该点可导;两个变元就是二元函数,构成了二维空间,那么这个空间中的某一点导数可以取得2个变元构成的平面内的所有方向(比如说xy平面内,以原点向外的360度方向),就是我们常说的方向导数,如果各个方向的导数都存在且该点的函数值能取得,所有的方向导数都共面则该点“可导”(实际上多元函数没有可导这个概念,只有偏导数,偏微分和全微分这些概念。而这里的“可导”是指可微分)。如果这里不理解,可以参考博客:https://blog.csdn.net/u013066730/article/details/83147774

多元函数在某点可导,但不连续

 在某点存在偏微分,但全微分不存在

参考博客:https://blog.csdn.net/weixin_40054912/article/details/79501962

我们考察这个函数在A=(0,0,0) 点的全微分和偏微分的情况。

f(x,y) 与y=0 的交线是:

 

平面与曲面所交曲线与x 轴重合:

 

A=(0,0,0) 点的微分(切线)很明显,就是交线(x 轴)自身,因此关于x 的偏微分存在。

但是f(x,y) 与y=x 的交线是:

 

A=(0,0,0) 点形成了一个尖点,很显然此时的微分不存在:

 

因此,全微分不存在。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值