uva10534(DP之LIS的应用 )

26 篇文章 0 订阅

题意:在给出的序列中找到一个长度为奇数的序列,且序列前半段严格单调递增,后半段严格单调递减。
解答:进行两次LIS,一次正向,一次逆向,LIS选用Nlogn的算法

/*
Solve:

*/
#include<iostream>
#include<algorithm>
#include<map>
#include<cstdio>
#include<cstdlib>
#include<vector>
#include<cmath>
#include<cstring>
#include<stack>
#include<string>
#include<set>
#include<fstream>
using namespace std;
#define pb push_back
#define cl(a,b) memset(a,b,sizeof(a))
#define bug printf("===\n");
#define rep(a,b) for(int i=a;i<b;i++)
#define rep_(a,b) for(int i=a;i<=b;i++)
#define P pair<int,int>
#define X first
#define Y second
#define vi vector<int>
const int maxn=10002;
const int inf=999999999;
typedef long long LL;
void Max(int&a,int b){if(a<b)a=b;}
void Min(int&a,int b){if(a>b)a=b;}
int a[maxn];
int b[maxn];

int d1[maxn],g[maxn];
void LIS1(int n,int *a){
    fill(g+1,g+n+1,inf);
    int ans=1;
    for(int i=0;i<n;i++){
        int k=lower_bound(g+1,g+n+1,a[i])-g;
        g[k]=a[i];
        d1[i]=k;
    }
}
int d2[maxn];
void LIS2(int n,int *a){
    fill(g+1,g+n+1,inf);
    int ans=1;
    for(int i=0;i<n;i++){
        int k=lower_bound(g+1,g+n+1,a[i])-g;
        g[k]=a[i];
        d2[i]=k;
    }
}
int main(){
    int n;
    while(~scanf("%d",&n)){
        for(int i=0;i<n;i++){
            scanf("%d",a+i);
            b[i]=a[i];
        }
        LIS1(n,a);
        reverse(b,b+n);//逆序计算一次
        LIS2(n,b);
        reverse(d2,d2+n);//因为是逆序计算的,所以还要变回去
        int ans=0;
        for(int i=0;i<n;i++){//取每个位置的最小LIS,最终的结果取最大
            Max(ans,min(d1[i],d2[i]));
        }
        printf("%d\n",ans*2-1);
    }
    return 0;
}
/*
10
1 2 3 4 5 4 3 2 1 10
19
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1
5
1 2 3 4 5
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值