线性回归是一种基础且常用的回归分析方法,主要用于建立自变量(特征)和因变量(目标值)之间的线性关系。其核心思想是通过拟合数据找到一条直线,使得预测值与实际值之间的误差最小化。最常用的优化方法是最小二乘法,它通过最小化预测值与实际值之间误差的平方和来求解模型参数。
核心步骤:
-
模型假设:假设目标变量 y y y 与自变量 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,…,xn 之间存在线性关系,表示为:
y = β 0 + β 1 x 1 + ⋯ + β n x n + ϵ y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \epsilon y=β0+β1x1+⋯+βnxn+ϵ
其中, β 0 \beta_0 β0 是截距, β 1 , … , β n \beta_1, \dots, \beta_n β1,…,βn 是回归系数, ϵ \epsilon ϵ 是误差项。 -
训练过程:通过训练数据来估计回归系数( β 0 , β 1 , … , β n \beta_0, \beta_1, \dots, \beta_n β0,β1,…,βn),最常用的优化目标是最小化均方误差(MSE):
M S E = 1 m ∑ i = 1 m ( y i − y ^ i ) 2 MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 MSE=m1i=1∑m(yi−y^i)2
其中, m m m 是样本数量, y i y_i yi 是真实值, y ^ i \hat{y}_i y^i 是模型预测值。 -
预测过程:一旦确定了回归系数,新的输入特征可以通过已拟合的模型进行预测。
优缺点:
- 优点:计算简单、易于理解,适用于线性关系较强的情况。
- 缺点:对异常值敏感,假设数据具有线性关系,不能很好处理非线性或高维特征。
应用场景:适用于需要预测连续值的任务,如房价预测、销售预测等。