【概要】线性回归

线性回归是一种基础且常用的回归分析方法,主要用于建立自变量(特征)和因变量(目标值)之间的线性关系。其核心思想是通过拟合数据找到一条直线,使得预测值与实际值之间的误差最小化。最常用的优化方法是最小二乘法,它通过最小化预测值与实际值之间误差的平方和来求解模型参数。

核心步骤

  1. 模型假设:假设目标变量 y y y 与自变量 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn 之间存在线性关系,表示为:
    y = β 0 + β 1 x 1 + ⋯ + β n x n + ϵ y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \epsilon y=β0+β1x1++βnxn+ϵ
    其中, β 0 \beta_0 β0 是截距, β 1 , … , β n \beta_1, \dots, \beta_n β1,,βn 是回归系数, ϵ \epsilon ϵ 是误差项。

  2. 训练过程:通过训练数据来估计回归系数( β 0 , β 1 , … , β n \beta_0, \beta_1, \dots, \beta_n β0,β1,,βn),最常用的优化目标是最小化均方误差(MSE):
    M S E = 1 m ∑ i = 1 m ( y i − y ^ i ) 2 MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 MSE=m1i=1m(yiy^i)2
    其中, m m m 是样本数量, y i y_i yi 是真实值, y ^ i \hat{y}_i y^i 是模型预测值。

  3. 预测过程:一旦确定了回归系数,新的输入特征可以通过已拟合的模型进行预测。

优缺点

  • 优点:计算简单、易于理解,适用于线性关系较强的情况。
  • 缺点:对异常值敏感,假设数据具有线性关系,不能很好处理非线性或高维特征。

应用场景:适用于需要预测连续值的任务,如房价预测、销售预测等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值