【概要】LASSO回归

LASSO回归(Least Absolute Shrinkage and Selection Operator Regression)是一种线性回归的扩展,它通过加入L1正则化项来约束模型的复杂度,从而实现特征选择和减少过拟合。LASSO回归在回归分析中通过控制模型的权重,使得一些特征的回归系数变为零,起到自动特征选择的作用。

核心概念:

  1. 模型形式
    与标准的线性回归类似,LASSO回归模型的目标是预测目标变量 y y y,但它在损失函数中添加了L1正则化项:
    y ^ = β 0 + β 1 x 1 + ⋯ + β n x n \hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n y^=β0+β1x1++βnxn
    损失函数
    LASSO损失函数 = ∑ i = 1 m ( y i − y ^ i ) 2 + λ ∑ j = 1 n ∣ β j ∣ \text{LASSO损失函数} = \sum_{i=1}^m (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^n |\beta_j| LASSO损失函数=i=1m(yiy^i)2+λj=1nβj
    其中, λ \lambda λ 是正则化强度的超参数, ∣ β j ∣ |\beta_j| βj 是回归系数的绝对值。正则化项 λ ∑ j = 1 n ∣ β j ∣ \lambda \sum_{j=1}^n |\beta_j| λj=1nβj 会惩罚大系数,并使一些系数变为零,从而达到特征选择的效果。

  2. L1正则化

    • L1正则化项 ∑ j = 1 n ∣ β j ∣ \sum_{j=1}^n |\beta_j| j=1nβj 对模型的回归系数进行惩罚,促使一些回归系数变为零。这意味着LASSO不仅仅是拟合数据,还能够自动筛选出重要的特征,去除那些不重要的特征。
  3. 超参数选择

    • λ \lambda λ 是一个需要调节的超参数,控制正则化的强度。较大的 λ \lambda λ 会导致更多的回归系数被压缩为零,从而使得模型更简洁,特征选择更加严格;较小的 λ \lambda λ 则会使得模型更接近普通的线性回归。

优缺点:

  • 优点

    • 特征选择:LASSO回归能够自动选择重要的特征,忽略不相关或冗余的特征,从而提高模型的解释性。
    • 减少过拟合:通过正则化,LASSO回归能够有效减少过拟合,尤其在特征数量多时。
    • 可解释性强:通过特征选择,模型相对简单,易于理解和解释。
  • 缺点

    • 特征选择可能过于严格:当特征之间存在较强相关性时,LASSO可能会随机选择其中一个特征,而忽略其他相关特征(这叫做“特征选择偏差”)。
    • 对特征缩放敏感:LASSO回归对特征的尺度敏感,因此需要在训练之前对数据进行标准化或归一化处理。

应用场景:

  • 高维数据分析:LASSO特别适用于特征数目远大于样本数的高维数据,如基因数据、文本数据等。
  • 模型压缩:在特征较多时,LASSO能够有效压缩特征空间,去除不必要的变量,提升模型的稳定性和泛化能力。
  • 数据预处理:通过LASSO进行特征选择,尤其适用于特征数量庞大的任务(如图像识别、文本分类等)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值