【Seaborn】sns.swarmplot() 函数:防止重叠的分类散点图

sns.swarmplot() —— 防止重叠的分类散点图(Swarm Plot)

seaborn.swarmplot() 用于显示分类数据的散点分布,同时避免数据点重叠,适用于 数据离散度、类别间比较、小数据集可视化


1. 语法

import seaborn as sns

sns.swarmplot(data=None, x=None, y=None, hue=None, dodge=False, size=5)

主要参数

参数作用
data数据集(pandas.DataFrame
x分类变量(类别列)
y数值变量(连续值)
hue按类别分色
dodge分开 hue(默认 False
size数据点大小(默认 5

2. 基本示例

2.1 画分类散点图

import seaborn as sns
import matplotlib.pyplot as plt

# 加载数据
data = sns.load_dataset("titanic")

# 绘制 Swarm Plot
sns.swarmplot(data=data, x="class", y="age")

plt.title("Age Distribution by Class")
plt.show()

📌 作用

  • swarmplot 确保数据点不重叠(适用于小数据集)。
    在这里插入图片描述

2.2 按类别着色(hue 参数)

sns.swarmplot(data=data, x="class", y="age", hue="sex")

plt.show()

📌 作用

  • hue="sex" 不同性别用不同颜色表示
    在这里插入图片描述

2.3 分开 hue 组(dodge=True

sns.swarmplot(data=data, x="class", y="age", hue="sex", dodge=True)

plt.show()

📌 作用

  • dodge=True 让不同 hue 组的点分开
    在这里插入图片描述

3. 进阶用法

3.1 调整点大小(size 参数)

sns.swarmplot(data=data, x="class", y="age", size=8)

plt.show()

📌 作用

  • size=8 增大数据点,适用于小数据集
    在这里插入图片描述

3.2 横向展示(orient="h"

sns.swarmplot(data=data, x="age", y="class", orient="h")

plt.show()

📌 作用

  • orient="h" 横向展示数据
    在这里插入图片描述

4. sns.swarmplot() vs sns.stripplot()

sns.swarmplot()sns.stripplot()
作用防止数据点重叠数据点可能重叠
适用场景小数据集大数据集
sns.stripplot(data=data, x="class", y="age", hue="sex", jitter=True)

plt.show()

📌 推荐

  • 小数据集(避免重叠)sns.swarmplot()
  • 大数据集(允许重叠)sns.stripplot()
    在这里插入图片描述

5. 总结

sns.swarmplot() 适用于分类数据的散点分布分析,特别是小数据集
常见参数

  • hue 分类着色dodge=True 分开不同类别size=8 调整点大小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值