GLM(General Language Model)模型

GLM(General Language Model)模型

GLM(General Language Model,通用语言模型)清华大学知识工程实验室(THU-KEG)和智谱 AI(Zhipu AI) 共同研发并从 2022 年开始发布的 开源大语言模型(LLM)。GLM 支持中英文双语,适用于多种 NLP 任务,如 文本生成、代码生成、问答、翻译 等。

论文GLM: General Language Model Pretraining with Autoregressive Blank Infilling
GitHub 地址THUDM/GLM
官网智谱 AI


1. 为什么需要 GLM?

在 GPT-3、BERT 以及 T5 等 NLP 模型的基础上,GLM 提出了一种 新的预训练方法,并针对 中文 NLP 任务进行了优化。GLM 主要目标是:

  1. 提供中国本土化的大模型替代方案,可 自由商用
  2. 优化中文 NLP 任务,适用于 智能客服、法律、金融、医疗等领域
  3. 支持更高效的训练方式,提高 推理速度数据利用率
  • GLM 适用于国产 AI 生态,支持企业级 AI 部署
  • 相比 GPT-4,GLM 更适合中文 NLP 任务

2. GLM 主要版本

GLM 已经迭代多个版本,适用于不同应用场景:

模型版本发布时间参数规模主要优化适用任务
GLM-130B2022-08130B中英文双语优化通用 NLP
ChatGLM-6B2023-046B轻量级,支持本地运行智能问答
ChatGLM2-6B2023-066B优化推理速度对话任务
ChatGLM3-6B2023-106B提升数学、代码能力智能客服、代码生成
GLM-42024-019B多模态支持多模态 AI
  • GLM-6B 适用于消费级 GPU(如 RTX 3090/4090)运行
  • GLM-130B 适用于高端服务器(如 A100/H100)
  • GLM-4 支持文本、图像、音频等多模态输入

3. GLM 的技术创新

GLM 主要在 预训练方法、训练效率、中文优化 方面进行了突破:

3.1 自回归填空(Autoregressive Blank Infilling,ABI)

  • 不同于 GPT-3 仅做自回归预测,GLM 结合了自回归填空(Blank Infilling)策略

  • GLM 在训练时,会随机 Mask 出单词、短语、句子,并让模型填空,提高对上下文的理解能力。

  • 比 GPT-3 更强的上下文理解能力

  • 提高对长文本的推理能力,适合问答、摘要任务


3.2 中英文双语优化

  • GLM 采用 50% 英文 + 50% 中文数据进行训练,比 LLaMA 更适合中文 NLP 任务。

  • 对中文命名实体、成语、古诗文等任务表现更好

  • 比 GPT-3 更适合中文任务,如法律、金融、医疗等专业领域

  • 比 LLaMA-2 更强的中文表现,适合国产 AI 生态


3.3 轻量化优化

  • ChatGLM-6B 仅需 6B 参数,但 对话能力接近 130B 级别模型

  • 采用高效推理优化,支持量化(INT4、INT8),可在消费级显卡上运行

  • 适用于本地部署,智能客服、个人 AI 助手

  • 相比 GPT-4 API,GLM-6B 运行成本更低


4. GLM 在 Hugging Face transformers 库中的使用

GLM 可以通过 Hugging Face 直接加载并使用

4.1 安装 transformers

pip install transformers

4.2 加载 GLM 分词器

from transformers import AutoTokenizer

# 加载 GLM 预训练的分词器
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b")

# 对文本进行分词
text = "人工智能的未来是什么?"
tokens = tokenizer(text, return_tensors="pt")

print(tokens)

4.3 加载 GLM 并进行文本生成

from transformers import AutoModelForCausalLM

# 加载 ChatGLM-6B 预训练模型
model = AutoModelForCausalLM.from_pretrained("THUDM/chatglm-6b")

# 生成文本
outputs = model.generate(**tokens, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

5. GLM 的应用场景

GLM 适用于 各种 NLP 任务

  • 智能客服(企业客服、AI 机器人)

  • 文本生成(新闻、小说、论文写作)

  • 对话系统(Chatbot)

  • 问答系统(QA)

  • 代码生成

  • 机器翻译

  • 自动摘要

  • 数学推理

  • 相比 GPT-4,GLM 更适合中文 NLP 任务

  • 相比 LLaMA 2,GLM 提供更好的代码、数学能力


6. GLM 与其他 LLM 的对比

模型开源/闭源参数量优化点适用任务
GPT-4闭源未公开生成能力最强商业 AI
GLM-130B开源130B强化数学、代码企业 AI
LLaMA 2-70B开源70B低计算成本本地部署
DeepSeek-67B开源67B代码优化编程 AI
Gemini 1.5 Pro闭源未公开多模态能力AI 生成内容
  • GLM 是中国领先的开源大模型,支持企业级 AI 部署
  • 相比 GPT-4,GLM 适合本地 AI 训练和商用 AI 生态

7. GLM 的最新动态

  • 2023-10:GLM 发布 ChatGLM3-6B,优化数学、代码任务。

  • 2024-01:GLM 发布 GLM-4,支持多模态 AI

  • GLM 是目前最强的开源中文大模型之一

  • GLM-4 支持图像、视频等多模态任务


8. 结论

  1. GLM 由清华大学和智谱 AI 开发,是开源的国产 LLM,适用于 NLP、代码、数学任务
  2. 相比 GPT-4,GLM 更适合本地部署,优化中文 NLP 任务
  3. 支持 Hugging Face transformers 直接加载,适用于文本生成、对话、翻译、问答等任务
  4. 适用于企业级 AI 训练,支持 API 和本地微调
  • GLM 是当前开源 AI 生态中最强的国产 LLM 之一,适用于 学术、企业、AI 研究等多个领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值