GLM(General Language Model)模型
GLM(General Language Model,通用语言模型) 是 清华大学知识工程实验室(THU-KEG)和智谱 AI(Zhipu AI) 共同研发并从 2022 年开始发布的 开源大语言模型(LLM)。GLM 支持中英文双语,适用于多种 NLP 任务,如 文本生成、代码生成、问答、翻译 等。
论文:GLM: General Language Model Pretraining with Autoregressive Blank Infilling
GitHub 地址:THUDM/GLM
官网:智谱 AI
1. 为什么需要 GLM?
在 GPT-3、BERT 以及 T5 等 NLP 模型的基础上,GLM 提出了一种 新的预训练方法,并针对 中文 NLP 任务进行了优化。GLM 主要目标是:
- 提供中国本土化的大模型替代方案,可 自由商用。
- 优化中文 NLP 任务,适用于 智能客服、法律、金融、医疗等领域。
- 支持更高效的训练方式,提高 推理速度 和 数据利用率。
- GLM 适用于国产 AI 生态,支持企业级 AI 部署
- 相比 GPT-4,GLM 更适合中文 NLP 任务
2. GLM 主要版本
GLM 已经迭代多个版本,适用于不同应用场景:
模型版本 | 发布时间 | 参数规模 | 主要优化 | 适用任务 |
---|---|---|---|---|
GLM-130B | 2022-08 | 130B | 中英文双语优化 | 通用 NLP |
ChatGLM-6B | 2023-04 | 6B | 轻量级,支持本地运行 | 智能问答 |
ChatGLM2-6B | 2023-06 | 6B | 优化推理速度 | 对话任务 |
ChatGLM3-6B | 2023-10 | 6B | 提升数学、代码能力 | 智能客服、代码生成 |
GLM-4 | 2024-01 | 9B | 多模态支持 | 多模态 AI |
- GLM-6B 适用于消费级 GPU(如 RTX 3090/4090)运行
- GLM-130B 适用于高端服务器(如 A100/H100)
- GLM-4 支持文本、图像、音频等多模态输入
3. GLM 的技术创新
GLM 主要在 预训练方法、训练效率、中文优化 方面进行了突破:
3.1 自回归填空(Autoregressive Blank Infilling,ABI)
-
不同于 GPT-3 仅做自回归预测,GLM 结合了自回归填空(Blank Infilling)策略。
-
GLM 在训练时,会随机 Mask 出单词、短语、句子,并让模型填空,提高对上下文的理解能力。
-
比 GPT-3 更强的上下文理解能力
-
提高对长文本的推理能力,适合问答、摘要任务
3.2 中英文双语优化
-
GLM 采用 50% 英文 + 50% 中文数据进行训练,比 LLaMA 更适合中文 NLP 任务。
-
对中文命名实体、成语、古诗文等任务表现更好。
-
比 GPT-3 更适合中文任务,如法律、金融、医疗等专业领域
-
比 LLaMA-2 更强的中文表现,适合国产 AI 生态
3.3 轻量化优化
-
ChatGLM-6B 仅需 6B 参数,但 对话能力接近 130B 级别模型。
-
采用高效推理优化,支持量化(INT4、INT8),可在消费级显卡上运行。
-
适用于本地部署,智能客服、个人 AI 助手
-
相比 GPT-4 API,GLM-6B 运行成本更低
4. GLM 在 Hugging Face transformers
库中的使用
GLM 可以通过 Hugging Face 直接加载并使用。
4.1 安装 transformers
pip install transformers
4.2 加载 GLM 分词器
from transformers import AutoTokenizer
# 加载 GLM 预训练的分词器
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b")
# 对文本进行分词
text = "人工智能的未来是什么?"
tokens = tokenizer(text, return_tensors="pt")
print(tokens)
4.3 加载 GLM 并进行文本生成
from transformers import AutoModelForCausalLM
# 加载 ChatGLM-6B 预训练模型
model = AutoModelForCausalLM.from_pretrained("THUDM/chatglm-6b")
# 生成文本
outputs = model.generate(**tokens, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
5. GLM 的应用场景
GLM 适用于 各种 NLP 任务:
-
智能客服(企业客服、AI 机器人)
-
文本生成(新闻、小说、论文写作)
-
对话系统(Chatbot)
-
问答系统(QA)
-
代码生成
-
机器翻译
-
自动摘要
-
数学推理
-
相比 GPT-4,GLM 更适合中文 NLP 任务
-
相比 LLaMA 2,GLM 提供更好的代码、数学能力
6. GLM 与其他 LLM 的对比
模型 | 开源/闭源 | 参数量 | 优化点 | 适用任务 |
---|---|---|---|---|
GPT-4 | 闭源 | 未公开 | 生成能力最强 | 商业 AI |
GLM-130B | 开源 | 130B | 强化数学、代码 | 企业 AI |
LLaMA 2-70B | 开源 | 70B | 低计算成本 | 本地部署 |
DeepSeek-67B | 开源 | 67B | 代码优化 | 编程 AI |
Gemini 1.5 Pro | 闭源 | 未公开 | 多模态能力 | AI 生成内容 |
- GLM 是中国领先的开源大模型,支持企业级 AI 部署
- 相比 GPT-4,GLM 适合本地 AI 训练和商用 AI 生态
7. GLM 的最新动态
-
2023-10:GLM 发布 ChatGLM3-6B,优化数学、代码任务。
-
2024-01:GLM 发布 GLM-4,支持多模态 AI。
-
GLM 是目前最强的开源中文大模型之一
-
GLM-4 支持图像、视频等多模态任务
8. 结论
- GLM 由清华大学和智谱 AI 开发,是开源的国产 LLM,适用于 NLP、代码、数学任务。
- 相比 GPT-4,GLM 更适合本地部署,优化中文 NLP 任务。
- 支持 Hugging Face
transformers
直接加载,适用于文本生成、对话、翻译、问答等任务。 - 适用于企业级 AI 训练,支持 API 和本地微调。
- GLM 是当前开源 AI 生态中最强的国产 LLM 之一,适用于 学术、企业、AI 研究等多个领域。