1. 什么是 LangGraph?
LangGraph 是由 LangChain 团队开发的一个开源库,专门用于构建和管理基于大型语言模型(LLM)的复杂工作流。它是一个用于创建 有状态、多步骤、图驱动的工作流 的工具,特别适合需要动态交互、循环执行或复杂逻辑的应用程序。
简单来说,LangGraph 提供了一种 以图(Graph)为结构 的方式来组织和执行 LLM 的调用、工具交互以及状态管理。相比传统的线性工作流(如简单的 prompt → LLM → 输出),LangGraph 更适合处理需要分支、循环、条件判断或多 agent 协作的场景。
LangGraph 的核心目标是:
- 模块化:将复杂的任务拆解为可复用的节点和边。
- 状态管理:支持在多步骤执行中维护和传递状态(如上下文、用户输入、工具输出等)。
- 灵活性:允许开发者自定义工作流的逻辑,适应多样化的应用场景。
2. LangGraph 的背景
LangGraph 是 LangChain 生态系统的一部分。LangChain 是一个广泛使用的框架,用于增强 LLM 的能力(如通过外部工具、记忆上下文、检索增强生成等)。然而,LangChain 的早期版本在处理复杂、多步骤的工作流时存在局限性,比如难以实现动态循环或多 agent 协作。
为了解决这些问题,LangChain 团队推出了 LangGraph,将其设计为一个更灵活的工具,专注于:
- 以 有向图 的形式组织任务。
- 支持 有状态的 agent(Stateful Agents),可以在多次交互中记住和更新上下文。
- 提供更高的可控性和扩展性,适合构建生产级应用。
LangGraph 通常与 LangChain 和 LangSmith(用于调试和监控 LLM 应用)结合使用,形成一个完整的开发生态。
3. LangGraph 的核心组件
LangGraph 的核心思想是将工作流建模为一个 有向图,其中:
- 节点(Nodes) 表示具体的操作或任务(如调用 LLM、执行工具、处理输入等)。
- 边(Edges) 定义了节点之间的连接和执行顺序(可以是有条件的)。
- 状态(State) 是一个贯穿整个图的数据结构,用于存储和传递信息。
以下是 LangGraph 的主要组件:
3.1 状态(State)
- LangGraph 使用一个 状态对象 来跟踪工作流的上下文。状态可以包含任意数据,比如:
- 用户的输入。
- LLM 的输出。
- 工具调用的结果。
- 中间计算的结果。
- 状态在图的执行过程中会不断更新,节点可以读取和修改状态。
- 状态通常是一个 Python 类或字典,开发者可以自定义其结构。
3.2 节点(Nodes)
- 节点是工作流中的执行单元,每个节点负责完成一个具体的任务,例如:
- 调用 LLM 生成文本。
- 执行外部工具(如搜索 API、数据库查询)。
- 进行逻辑判断或数据处理。
- 节点是一个 Python 函数,接收当前状态作为输入,并返回更新后的状态。
3.3 边(Edges)
- 边定义了节点之间的执行顺序,可以是:
- 无条件边:直接从一个节点跳转到另一个节点。
- 条件边:根据状态的某些条件选择下一个节点(类似 if-else 逻辑)。
- 边使得 LangGraph 能够实现动态的工作流,比如根据 LLM 的输出决定下一步操作。
3.4 图(Graph)
- 图是节点和边的集合,表示整个工作流的逻辑。
- LangGraph 提供了 StateGraph 类,用于定义和编译图。
- 图可以是:
- 有向无环图(DAG):适合线性或分支的工作流。
- 有向循环图:支持循环执行,比如在 agent 反复思考或工具调用时。
4. LangGraph 的工作原理
LangGraph 的执行过程可以概括为以下步骤:
- 定义状态:创建一个状态对象,定义工作流中需要跟踪的数据结构。
- 创建节点:编写节点函数,每个函数实现一个任务(如调用 LLM 或处理数据)。
- 定义边:指定节点之间的连接逻辑,包括条件跳转。
- 构建图:使用 LangGraph 的 API(通常是
StateGraph
)将节点和边组合成一个图。 - 编译和执行:编译图并运行,输入初始状态,图会按照定义的逻辑依次执行节点,更新状态,直到达到终止条件。
例如,一个简单的 LangGraph 工作流可能是:
- 节点 1:接收用户输入并调用 LLM 生成回答。
- 节点 2:检查回答是否需要调用外部工具(如搜索)。
- 条件边:如果需要工具,则跳转到工具调用节点;否则结束。
5. LangGraph 的主要功能和优势
5.1 动态工作流
- 支持动态分支和循环,适合复杂的任务逻辑。
- 例如,一个 agent 可以在生成回答后检查是否需要更多信息,决定是调用工具还是直接返回。
5.2 状态管理
- 内置状态管理机制,方便在多步骤任务中维护上下文。
- 状态可以跨节点共享,避免重复计算或信息丢失。
5.3 多 Agent 协作
- LangGraph 适合构建多 agent 系统,每个 agent 可以是一个节点,协作完成任务。
- 例如,一个 agent 负责生成文本,另一个 agent 负责验证事实。
5.4 工具集成
- 与 LangChain 的工具生态无缝集成,支持调用外部 API、数据库、搜索工具等。
- 工具调用可以动态触发,基于 LLM 的决策。
5.5 可视化和调试
- LangGraph 支持与 LangSmith 集成,可以可视化工作流、监控执行过程、调试问题。
- 图结构使得复杂逻辑更易于理解和维护。
5.6 扩展性
- LangGraph 高度模块化,开发者可以自定义节点、边和状态,适应各种场景。
- 适合从简单脚本到生产级应用的开发。
6. LangGraph 的应用场景
LangGraph 适用于需要复杂逻辑或多步骤交互的场景,包括但不限于:
6.1 智能 Agent
- 构建具有反思和工具调用能力的智能 agent。
- 例如,一个客服 agent 可以根据用户问题动态决定是否查询数据库、调用 API 或直接回答。
6.2 对话系统
- 实现多轮对话系统,维护对话历史并根据上下文动态调整回答。
- 例如,一个教育助手可以在多轮交互中逐步引导学生解决问题。
6.3 自动化工作流
- 自动化复杂的业务流程,如数据处理、报告生成、决策支持。
- 例如,一个财务分析系统可以从输入数据到生成报告,涉及多个步骤和条件判断。
6.4 RAG(检索增强生成)
- 在检索增强生成中,LangGraph 可以管理查询、检索、生成答案的整个流程。
- 例如,先从文档中检索相关内容,再用 LLM 总结。
6.5 多模态应用
- 结合文本、图像或其他数据,构建多模态工作流。
- 例如,一个图像描述系统可以先调用图像处理工具,再用 LLM 生成描述。
7. LangGraph 与其他工具的对比
7.1 LangGraph vs. LangChain
- LangChain 更适合简单的、线性的 LLM 应用,核心是 prompt 管理和工具调用。
- LangGraph 专注于复杂工作流,强调图结构和状态管理,适合动态、循环或多 agent 场景。
7.2 LangGraph vs. 传统工作流工具
- 相比传统的工作流工具(如 Airflow),LangGraph 更专注于 LLM 驱动的场景,天然支持语言模型的动态性和不确定性。
- LangGraph 的图结构更轻量,适合快速原型开发。
7.3 LangGraph vs. Agent Frameworks
- 类似框架(如 AutoGen、 CrewAI)也支持多 agent 系统,但 LangGraph 的图结构更通用,允许开发者完全自定义逻辑,而不仅仅局限于 agent 协作。
8. 如何开始使用 LangGraph?
要开始使用 LangGraph,你需要:
- 安装 LangChain 和 LangGraph:
pip install langchain langgraph
- 学习基本概念:
- 熟悉状态、节点、边的定义。
- 阅读 LangGraph 的官方文档(https://langchain-ai.github.io/langgraph/)。
- 实现一个简单例子:
- 比如构建一个两节点的工作流:一个节点调用 LLM,另一个节点处理输出。
- 结合 LangSmith:
- 使用 LangSmith 可视化你的工作流,调试和优化。
以下是一个简单的代码示例,展示如何用 LangGraph 构建一个基本工作流:
from langgraph.graph import StateGraph
from typing import TypedDict
# 定义状态
class State(TypedDict):
input: str
output: str
# 定义节点
def node_1(state: State) -> State:
state["output"] = f"处理输入: {state['input']}"
return state
def node_2(state: State) -> State:
state["output"] += " -> 已完成"
return state
# 创建图
workflow = StateGraph(State)
workflow.add_node("node_1", node_1)
workflow.add_node("node_2", node_2)
workflow.add_edge("node_1", "node_2")
workflow.set_entry_point("node_1")
workflow.set_finish_point("node_2")
# 编译和运行
graph = workflow.compile()
result = graph.invoke({"input": "Hello, LangGraph!"})
print(result)
# 输出: {'input': 'Hello, LangGraph!', 'output': '处理输入: Hello, LangGraph! -> 已完成'}
9. 总结
LangGraph 是一个强大的工具,用于构建和管理基于 LLM 的复杂工作流。它通过图结构、状态管理和动态执行,解决了传统线性工作流的局限性,特别适合智能 agent、对话系统、自动化流程等场景。