【LangChain】什么是 LangGraph

1. 什么是 LangGraph?

LangGraph 是由 LangChain 团队开发的一个开源库,专门用于构建和管理基于大型语言模型(LLM)的复杂工作流。它是一个用于创建 有状态、多步骤、图驱动的工作流 的工具,特别适合需要动态交互、循环执行或复杂逻辑的应用程序。

简单来说,LangGraph 提供了一种 以图(Graph)为结构 的方式来组织和执行 LLM 的调用、工具交互以及状态管理。相比传统的线性工作流(如简单的 prompt → LLM → 输出),LangGraph 更适合处理需要分支、循环、条件判断或多 agent 协作的场景。

LangGraph 的核心目标是:

  • 模块化:将复杂的任务拆解为可复用的节点和边。
  • 状态管理:支持在多步骤执行中维护和传递状态(如上下文、用户输入、工具输出等)。
  • 灵活性:允许开发者自定义工作流的逻辑,适应多样化的应用场景。

2. LangGraph 的背景

LangGraph 是 LangChain 生态系统的一部分。LangChain 是一个广泛使用的框架,用于增强 LLM 的能力(如通过外部工具、记忆上下文、检索增强生成等)。然而,LangChain 的早期版本在处理复杂、多步骤的工作流时存在局限性,比如难以实现动态循环或多 agent 协作。

为了解决这些问题,LangChain 团队推出了 LangGraph,将其设计为一个更灵活的工具,专注于:

  • 有向图 的形式组织任务。
  • 支持 有状态的 agent(Stateful Agents),可以在多次交互中记住和更新上下文。
  • 提供更高的可控性和扩展性,适合构建生产级应用。

LangGraph 通常与 LangChain 和 LangSmith(用于调试和监控 LLM 应用)结合使用,形成一个完整的开发生态。


3. LangGraph 的核心组件

LangGraph 的核心思想是将工作流建模为一个 有向图,其中:

  • 节点(Nodes) 表示具体的操作或任务(如调用 LLM、执行工具、处理输入等)。
  • 边(Edges) 定义了节点之间的连接和执行顺序(可以是有条件的)。
  • 状态(State) 是一个贯穿整个图的数据结构,用于存储和传递信息。

以下是 LangGraph 的主要组件:

3.1 状态(State)
  • LangGraph 使用一个 状态对象 来跟踪工作流的上下文。状态可以包含任意数据,比如:
    • 用户的输入。
    • LLM 的输出。
    • 工具调用的结果。
    • 中间计算的结果。
  • 状态在图的执行过程中会不断更新,节点可以读取和修改状态。
  • 状态通常是一个 Python 类或字典,开发者可以自定义其结构。
3.2 节点(Nodes)
  • 节点是工作流中的执行单元,每个节点负责完成一个具体的任务,例如:
    • 调用 LLM 生成文本。
    • 执行外部工具(如搜索 API、数据库查询)。
    • 进行逻辑判断或数据处理。
  • 节点是一个 Python 函数,接收当前状态作为输入,并返回更新后的状态。
3.3 边(Edges)
  • 边定义了节点之间的执行顺序,可以是:
    • 无条件边:直接从一个节点跳转到另一个节点。
    • 条件边:根据状态的某些条件选择下一个节点(类似 if-else 逻辑)。
  • 边使得 LangGraph 能够实现动态的工作流,比如根据 LLM 的输出决定下一步操作。
3.4 图(Graph)
  • 图是节点和边的集合,表示整个工作流的逻辑。
  • LangGraph 提供了 StateGraph 类,用于定义和编译图。
  • 图可以是:
    • 有向无环图(DAG):适合线性或分支的工作流。
    • 有向循环图:支持循环执行,比如在 agent 反复思考或工具调用时。

4. LangGraph 的工作原理

LangGraph 的执行过程可以概括为以下步骤:

  1. 定义状态:创建一个状态对象,定义工作流中需要跟踪的数据结构。
  2. 创建节点:编写节点函数,每个函数实现一个任务(如调用 LLM 或处理数据)。
  3. 定义边:指定节点之间的连接逻辑,包括条件跳转。
  4. 构建图:使用 LangGraph 的 API(通常是 StateGraph)将节点和边组合成一个图。
  5. 编译和执行:编译图并运行,输入初始状态,图会按照定义的逻辑依次执行节点,更新状态,直到达到终止条件。

例如,一个简单的 LangGraph 工作流可能是:

  • 节点 1:接收用户输入并调用 LLM 生成回答。
  • 节点 2:检查回答是否需要调用外部工具(如搜索)。
  • 条件边:如果需要工具,则跳转到工具调用节点;否则结束。

5. LangGraph 的主要功能和优势

5.1 动态工作流
  • 支持动态分支和循环,适合复杂的任务逻辑。
  • 例如,一个 agent 可以在生成回答后检查是否需要更多信息,决定是调用工具还是直接返回。
5.2 状态管理
  • 内置状态管理机制,方便在多步骤任务中维护上下文。
  • 状态可以跨节点共享,避免重复计算或信息丢失。
5.3 多 Agent 协作
  • LangGraph 适合构建多 agent 系统,每个 agent 可以是一个节点,协作完成任务。
  • 例如,一个 agent 负责生成文本,另一个 agent 负责验证事实。
5.4 工具集成
  • 与 LangChain 的工具生态无缝集成,支持调用外部 API、数据库、搜索工具等。
  • 工具调用可以动态触发,基于 LLM 的决策。
5.5 可视化和调试
  • LangGraph 支持与 LangSmith 集成,可以可视化工作流、监控执行过程、调试问题。
  • 图结构使得复杂逻辑更易于理解和维护。
5.6 扩展性
  • LangGraph 高度模块化,开发者可以自定义节点、边和状态,适应各种场景。
  • 适合从简单脚本到生产级应用的开发。

6. LangGraph 的应用场景

LangGraph 适用于需要复杂逻辑或多步骤交互的场景,包括但不限于:

6.1 智能 Agent
  • 构建具有反思和工具调用能力的智能 agent。
  • 例如,一个客服 agent 可以根据用户问题动态决定是否查询数据库、调用 API 或直接回答。
6.2 对话系统
  • 实现多轮对话系统,维护对话历史并根据上下文动态调整回答。
  • 例如,一个教育助手可以在多轮交互中逐步引导学生解决问题。
6.3 自动化工作流
  • 自动化复杂的业务流程,如数据处理、报告生成、决策支持。
  • 例如,一个财务分析系统可以从输入数据到生成报告,涉及多个步骤和条件判断。
6.4 RAG(检索增强生成)
  • 在检索增强生成中,LangGraph 可以管理查询、检索、生成答案的整个流程。
  • 例如,先从文档中检索相关内容,再用 LLM 总结。
6.5 多模态应用
  • 结合文本、图像或其他数据,构建多模态工作流。
  • 例如,一个图像描述系统可以先调用图像处理工具,再用 LLM 生成描述。

7. LangGraph 与其他工具的对比

7.1 LangGraph vs. LangChain
  • LangChain 更适合简单的、线性的 LLM 应用,核心是 prompt 管理和工具调用。
  • LangGraph 专注于复杂工作流,强调图结构和状态管理,适合动态、循环或多 agent 场景。
7.2 LangGraph vs. 传统工作流工具
  • 相比传统的工作流工具(如 Airflow),LangGraph 更专注于 LLM 驱动的场景,天然支持语言模型的动态性和不确定性。
  • LangGraph 的图结构更轻量,适合快速原型开发。
7.3 LangGraph vs. Agent Frameworks
  • 类似框架(如 AutoGen、 CrewAI)也支持多 agent 系统,但 LangGraph 的图结构更通用,允许开发者完全自定义逻辑,而不仅仅局限于 agent 协作。

8. 如何开始使用 LangGraph?

要开始使用 LangGraph,你需要:

  1. 安装 LangChain 和 LangGraph
    pip install langchain langgraph
    
  2. 学习基本概念
  3. 实现一个简单例子
    • 比如构建一个两节点的工作流:一个节点调用 LLM,另一个节点处理输出。
  4. 结合 LangSmith
    • 使用 LangSmith 可视化你的工作流,调试和优化。

以下是一个简单的代码示例,展示如何用 LangGraph 构建一个基本工作流:

from langgraph.graph import StateGraph
from typing import TypedDict

# 定义状态
class State(TypedDict):
    input: str
    output: str

# 定义节点
def node_1(state: State) -> State:
    state["output"] = f"处理输入: {state['input']}"
    return state

def node_2(state: State) -> State:
    state["output"] += " -> 已完成"
    return state

# 创建图
workflow = StateGraph(State)
workflow.add_node("node_1", node_1)
workflow.add_node("node_2", node_2)
workflow.add_edge("node_1", "node_2")
workflow.set_entry_point("node_1")
workflow.set_finish_point("node_2")

# 编译和运行
graph = workflow.compile()
result = graph.invoke({"input": "Hello, LangGraph!"})
print(result)
# 输出: {'input': 'Hello, LangGraph!', 'output': '处理输入: Hello, LangGraph! -> 已完成'}

9. 总结

LangGraph 是一个强大的工具,用于构建和管理基于 LLM 的复杂工作流。它通过图结构、状态管理和动态执行,解决了传统线性工作流的局限性,特别适合智能 agent、对话系统、自动化流程等场景。

内容概要:《2025年机器身份安全现状报告》揭示了机器身份安全在全球企业中的重要性和面临的挑战。随着云计算、AI和微服务的发展,机器身份数量已远超人类身份,成为现代网络安全的核心。然而,管理这些身份变得越来越复杂,许多组织缺乏统一的管理策略。77%的安全领导者认为每个未发现的机器身份都是潜在的风险点,50%的组织在过去一年中经历了与机器身份相关的安全事件,导致应用发布延迟、客户体验受损和数据泄露等问题。AI的兴起进一步加剧了这一问题,81%的安全领导者认为机器身份将是保护AI未来的关键。此外,证书相关故障频发,自动化管理仍不足,量子计算的威胁也逐渐显现。面对这些挑战,组织需要建立全面的机器身份安全计划,重点加强自动化、可见性和加密灵活性。 适合人群:从事信息安全、IT管理和技术架构规划的专业人士,尤其是关注机器身份管理和云原生环境安全的从业者。 使用场景及目标:①理解机器身份在现代企业安全架构中的关键作用;②识别当前机器身份管理中存在的主要风险和挑战;③探讨如何通过自动化、可见性和加密灵活性来提升机器身份安全管理的有效性;④为制定或优化企业机器身份安全策略提供参考。 其他说明:此报告基于对全球1,200名安全领导者的调查,强调了机器身份安全的重要性及其在未来几年内可能面临的复杂变化。报告呼吁各组织应重视并积极应对这些挑战,以确保业务连续性和数据安全。
基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。该项目可以直接作为毕设、期末大作业使用,代码都在里面,系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值,项目都经过严格调试,确保可以运行! 基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设
### 使用 LangChain 查询 LangGraph 数据库 LangChain 是一种用于构建语言模型应用程序的强大框架,它提供了丰富的工具集来处理各种数据源和结构化数据。当涉及到查询 LangGraph 数据库时,可以通过 LangChain 的连接器功能实现这一目标。 #### 连接 LangGraph 数据库 为了使 LangChain 能够访问 LangGraph 数据库,首先需要配置数据库的连接参数。这通常涉及指定数据库 URL 或其他必要的认证信息[^1]。以下是设置连接的一个基本示例: ```python from langchain import SQLDatabase, SQLDatabaseChain from langchain.llms import OpenAI # 配置 LangGraph 数据库连接 db_url = "your_langgraph_database_url" database = SQLDatabase.from_uri(db_url) # 初始化 LLM 和 Database Chain llm = OpenAI(temperature=0) db_chain = SQLDatabaseChain(llm=llm, database=database, verbose=True) ``` 上述代码片段展示了如何创建一个 `SQLDatabase` 对象以及初始化链式逻辑以支持自然语言到 SQL 查询的转换。 #### 执行查询操作 一旦建立了与 LangGraph 数据库的有效链接,就可以利用 LangChain 提供的功能执行复杂的查询任务。下面是一个简单的例子,展示如何通过自然语言提问的方式获取所需的数据: ```python response = db_chain.run("告诉我 LangGraph 中有多少张表格?") print(response) ``` 在这个过程中,LLM 将负责理解用户的意图并将之转化为合适的 SQL 语法形式,随后由数据库引擎实际运行这些命令并反馈结果给前端应用层面上下文中提到过的内容表明,在某些特定领域比如复杂工作流编排方面可能还需要评估是否继续沿用 LangChain 解决方案因为存在替代品如 AutoGen 可能提供更加优化的选择但在向量存储整合或者高级文档解析等功能上仍然保留独特优势因此可以根据具体需求决定最佳实践路径[^2]。 ### 注意事项 尽管 LangChain 在许多情况下表现优异,但对于一些简单或标准化的任务来说,单独采用 AutoGen 核心组件或许就足够满足业务诉求;然而如果项目特别强调灵活性或者是高度定制化的解决方案,则应该考虑结合两者各自特长之处形成互补效应从而达到最优效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值