【LangChain】langchain_core.retrievers.BaseRetriever 类:定义文档检索器标准的抽象基类

langchain_core.retrievers.BaseRetriever 是 LangChain 框架中的一个核心抽象基类,用于定义文档检索系统的标准接口,广泛应用于检索增强生成(RAG)系统和代理(Agent)系统中。它通过接受非结构化查询(如字符串)并返回相关文档列表,为开发者提供了灵活的检索功能。

1. 概述

1.1 什么是 BaseRetriever

BaseRetrieverlangchain_core.retrievers 模块中的抽象基类,继承自 RunnableSerializable[str, List[Document]] 和 Python 的 ABC(抽象基类)。它定义了检索器的核心接口,允许开发者通过子类化实现从各种数据源(如向量存储、数据库或 Web API)检索文档的逻辑。BaseRetriever 的主要任务是将输入查询(如文本字符串)映射到相关的 Document 对象列表,支持同步和异步操作。

该类在 langchain-core 0.2.14 版本中引入,是 LangChain 检索系统的基石,适用于构建 RAG 管道、代理工具或自定义检索逻辑。相关信息可参考 LangChain 自定义检索器指南BaseRetriever API 参考

1.2 核心功能

  • 标准化检索接口:定义从任意数据源检索文档的统一接口,接受字符串查询并返回 Document 列表。
  • Runnable 支持:继承 RunnableSerializable,支持 LangChain 的标准操作(如 invokeainvokebatchabatch),便于链式组合。
  • 同步与异步操作:提供同步方法(_get_relevant_documents)和可选异步方法(_aget_relevant_documents),满足不同性能需求。
  • 自定义扩展:通过子类化实现自定义检索逻辑,适用于向量存储、数据库、Web API 或其他数据源。
  • 元数据与标签:支持配置 metadatatags,传递给回调用于日志和跟踪。
  • 实验性功能:提供 Beta 版 API(如 as_toolastream_events),扩展功能。
  • 版本要求:需 langchain-core>=0.2.14,推荐使用最新版本。

2. 定义与结构

2.1 类定义

BaseRetriever 是抽象基类,定义如下(简化表示):

from abc import ABC
from typing import Any, Dict, List, Optional
from langchain_core.documents import Document
from langchain_core.runnables import RunnableConfig, RunnableSerializable
from langchain_core.callbacks import AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun

class BaseRetriever(RunnableSerializable[str, List[Document]], ABC):
    metadata: Optional[Dict[str, Any]]
    tags: Optional[List[str]]

    def _get_relevant_documents(self, query: str, *, run_manager: Optional[CallbackManagerForRetrieverRun] = None) -> List[Document]:
        raise NotImplementedError

    async def _aget_relevant_documents(self, query: str, *, run_manager: Optional[AsyncCallbackManagerForRetrieverRun] = None) -> List[Document]:
        ...

2.2 初始化参数

参数类型默认值描述
metadataOptional[Dict[str, Any]]None可选,检索器的元数据,传递给回调用于跟踪。
tagsOptional[List[str]]None可选,检索器的标签,传递给回调用于日志记录。

2.3 核心方法

以下是 BaseRetriever 的主要方法,基于 API 参考:

方法描述参数返回值异步
invoke同步调用检索器,返回相关文档列表。input: str, config: Optional[RunnableConfig], **kwargs: AnyList[Document]No
ainvoke异步调用检索器,返回相关文档列表。invokeList[Document]Yes
batch同步批量处理多个查询,返回文档列表。inputs: List[str], config: Optional[Union[RunnableConfig, List[RunnableConfig]]], return_exceptions: bool, **kwargs: AnyList[List[Document]]No
abatch异步批量处理多个查询,返回文档列表。batchList[List[Document]]Yes
stream同步流式输出检索结果。input: str, config: Optional[RunnableConfig], **kwargs: AnyIterator[List[Document]]No
astream异步流式输出检索结果。streamAsyncIterator[List[Document]]Yes
astream_events异步流式输出事件(Beta 功能)。input: Any, config: Optional[RunnableConfig], version: Literal['v1', 'v2'], **kwargs: AnyAsyncIterator[StreamEvent]Yes
_get_relevant_documents抽象方法,定义文档检索逻辑,子类必须实现。query: str, run_manager: Optional[CallbackManagerForRetrieverRun]List[Document]No
_aget_relevant_documents可选异步方法,定义异步检索逻辑,默认调用同步方法,子类可覆盖。query: str, run_manager: Optional[AsyncCallbackManagerForRetrieverRun]List[Document]Yes
as_tool将检索器转换为 BaseTool(Beta 功能)。name: str, description: Optional[str], args_schema: Optional[Type[BaseModel]]BaseToolNo

已废弃方法

  • get_relevant_documents(自 langchain-core==0.1.46 起废弃,推荐使用 invoke)。
  • aget_relevant_documents(自 langchain-core==0.1.46 起废弃,推荐使用 ainvoke)。

3. 使用方法

使用 BaseRetriever 通常需要创建子类并实现 _get_relevant_documents 方法,以下是具体使用方式和示例:

3.1 创建自定义检索器

实现一个简单的字符串匹配检索器:

from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
import asyncio

class ToyRetriever(BaseRetriever):
    documents: List[Document] = []
    k: int = 3

    def _get_relevant_documents(self, query: str, *, run_manager=None) -> List[Document]:
        query_lower = query.lower()
        relevant_docs = [
            doc for doc in self.documents
            if query_lower in doc.page_content.lower()
        ]
        return relevant_docs[:self.k]

    async def _aget_relevant_documents(self, query: str, *, run_manager=None) -> List[Document]:
        return await asyncio.get_event_loop().run_in_executor(None, lambda: self._get_relevant_documents(query, run_manager=run_manager))

# 初始化文档
docs = [
    Document(page_content="我有一只狗"),
    Document(page_content="我有一只猫"),
    Document(page_content="我有一条金鱼"),
]

# 创建检索器
retriever = ToyRetriever(documents=docs, k=2)

# 同步调用
results = retriever.invoke("狗")
print(results)  # 输出: [Document(page_content="我有一只狗", ...)]

# 异步调用
results_async = await retriever.ainvoke("狗")
print(results_async)  # 输出: [Document(page_content="我有一只狗", ...)]

3.2 批量处理

处理多个查询:

queries = ["狗", "猫"]
results = retriever.batch(queries)
print(results)  # 输出: [[Document(page_content="我有一只狗", ...)], [Document(page_content="我有一只猫", ...)]]

3.3 结合 RAG 链

将自定义检索器集成到 RAG 链:

from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

# 定义提示模板
prompt = ChatPromptTemplate.from_template("根据以下文档回答问题:\n{docs}\n问题:{question}")

# 创建 RAG 链
chain = (
    {"docs": retriever | (lambda docs: "\n".join(doc.page_content for doc in docs)), "question": RunnablePassthrough()}
    | prompt
    | ChatOpenAI(model="gpt-4o-mini")
)

# 调用链
result = chain.invoke("我有什么宠物?")
print(result)  # 输出模型生成答案,如“我有狗、猫和金鱼。”

4. 实际应用

BaseRetriever 在以下场景中广泛应用:

  • 检索增强生成(RAG):检索相关文档后传递给语言模型生成答案,适用于问答系统、知识库查询。
  • 代理系统:为代理提供检索功能,代理根据用户输入调用检索工具获取上下文,如智能助手。
  • 自定义检索逻辑:通过子类化实现从特定数据源(如数据库、Web API、文件系统)检索文档,满足定制需求。
  • 批量与流式处理:处理大规模查询或实时输出,适用于高并发或交互式应用。
  • 测试与原型设计:结合虚假嵌入模型(如 FakeEmbeddings)或简单检索逻辑,快速验证管道。

5. 最佳实践

  • 实现异步方法:若数据源支持异步(如数据库或 API),实现 _aget_relevant_documents,优化性能。
  • 定义清晰逻辑:在 _get_relevant_documents 中实现明确的检索逻辑,避免复杂性。
  • 文档与注释:为自定义检索器提供详细文档字符串,说明初始化参数和使用场景,例如:
    class ToyRetriever(BaseRetriever):
        """一个简单的字符串匹配检索器。
    
        Args:
            documents: 要搜索的文档列表。
            k: 返回的最大文档数,默认为 3。
        """
    
  • 测试覆盖:测试 invokeainvokebatchabatch,确保同步和异步行为一致。
  • 元数据利用:使用 metadatatags 记录上下文,方便 LangSmith 跟踪。
  • 版本检查:通过 pip install -qU langchain 确保安装 langchain-core>=0.2.14
  • 调试工具:使用 LangSmith 跟踪检索操作,调试复杂链或代理系统。

6. 注意事项与限制

  • 抽象基类BaseRetriever 不可直接实例化,必须子类化并实现 _get_relevant_documents
  • 废弃方法:避免使用 get_relevant_documentsaget_relevant_documents(自 langchain-core==0.1.46 起废弃),优先使用 invokeainvoke
  • 异步默认实现:若未实现 _aget_relevant_documents,默认调用同步方法,可能影响性能。
  • Pydantic 兼容性:自定义检索器的字段需符合 Pydantic 要求,避免验证错误。
  • 模块路径:确保正确导入 langchain_core.retrievers.BaseRetriever
  • 版本依赖:功能可能受版本限制,需确保兼容最新版本。
  • Beta 功能as_toolastream_events 是实验性 API,未来可能调整。

7. 结论

langchain_core.retrievers.BaseRetriever 是 LangChain 框架中定义文档检索系统标准接口的抽象基类,通过支持同步和异步操作、批量处理和流式输出,为 RAG 系统、代理系统和自定义检索逻辑提供了强大支持。其灵活的 Runnable 接口和元数据管理使其易于集成到复杂工作流中。通过子类化实现自定义检索逻辑,结合 EmbeddingsVectorStoreRetriever 和 LangChain 生态系统,开发者可以构建高效、精准的检索系统。遵循最佳实践并注意版本要求,将有助于充分发挥其功能。

8. 参考资料

《餐馆点餐管理系统——基于Java和MySQL的课程设计解析》 在信息技术日益发达的今天,餐饮行业的数字化管理已经成为一种趋势。本次课程设计的主题是“餐馆点餐管理系统”,它结合了编程语言Java和数据库管理系统MySQL,旨在帮助初学者理解如何构建一个实际的、具有基本功能的餐饮管理软件。下面,我们将深入探讨这个系统的实现细节及其所涉及的关键知识点。 我们要关注的是数据库设计。在“res_db.sql”文件中,我们可以看到数据库的结构,可能包括菜品表、订单表、顾客信息表等。在MySQL中,我们需要创建这些表格并定义相应的字段,如菜品ID、名称、价格、库存等。此外,还要设置主键、外键来保证数据的一致性和完整性。例如,菜品ID作为主键,确保每个菜品的唯一性;订单表中的顾客ID和菜品ID则作为外键,与顾客信息表和菜品表关联,形成数据间的联系。 接下来,我们来看Java部分。在这个系统中,Java主要负责前端界面的展示和后端逻辑的处理。使用Java Swing或JavaFX库可以创建用户友好的图形用户界面(GUI),让顾客能够方便地浏览菜单、下单。同时,Java还负责与MySQL数据库进行交互,通过JDBC(Java Database Connectivity)API实现数据的增删查改操作。在程序中,我们需要编写SQL语句,比如INSERT用于添加新的菜品信息,SELECT用于查询所有菜品,UPDATE用于更新菜品的价格,DELETE用于删除不再提供的菜品。 在系统设计中,我们还需要考虑一些关键功能的实现。例如,“新增菜品和价格”的功能,需要用户输入菜品信息,然后通过Java程序将这些信息存储到数据库中。在显示所有菜品的功能上,程序需要从数据库获取所有菜品数据,然后在界面上动态生成列表或者表格展示。同时,为了提高用户体验,可能还需要实现搜索和排序功能,允许用户根据菜品名称或价格进行筛选。 另外,安全性也是系统设计的重要一环。在连接数据库时,要避免SQL注入攻击,可以通过预编译的PreparedStatement对象来执行SQL命令。对于用户输入的数据,需要进行验证和过滤,防止非法字符和异常值。 这个“餐馆点餐管理系统”项目涵盖了Java编程、数据库设计与管理、用户界面设计等多个方面,是一个很好的学习实践平台。通过这个项目,初学者不仅可以提升编程技能,还能对数据库管理和软件工程有更深入的理解。在实际开发过程中,还会遇到调试、测试、优化等挑战,这些都是成长为专业开发者不可或缺的经验积累
### 关于 `llama_index.node_parser` 模块未找到的问题 在 Python 中遇到 `ModuleNotFoundError: No module named 'llama_index.node_parser'` 错误通常是因为安装的库版本不匹配或者路径错误。以下是对此问题的分析以及解决方案。 #### 1. 版本兼容性问题 `node_parser` 是 LlamaIndex 库中的一个重要组件,但在某些旧版本中可能不存在该模块。因此,建议确认当前使用的 LlamaIndex 是否为最新版本[^1]。如果版本过低,则需要升级到支持 `node_parser` 的版本。 可以通过以下命令检查已安装的 LlamaIndex 版本: ```bash pip show llama-index ``` 如果发现版本较低,可以尝试更新至最新版: ```bash pip install --upgrade llama-index ``` #### 2. 导入路径修正 LlamaIndex 的导入路径可能会因版本不同而有所变化。根据最新的官方文档和引用内容,推荐使用如下方式导入 `SemanticSplitterNodeParser` 和其他相关: ```python from llama_index.core.node_parser import SemanticSplitterNodeParser from llama_index.embeddings.openai import OpenAIEmbedding ``` 注意:上述代码片段假设您正在使用的是较新的核心模块 (`core`)。如果您仍然无法成功导入,请仔细核对您的 LlamaIndex 安装版本是否与官方文档一致[^2]。 #### 3. 替代方法 如果确实由于某种原因无法访问 `node_parser` 模块,您可以考虑手动创建似的节点分割逻辑作为替代方案。例如,通过自定义分词工具来模拟其功能: ```python class CustomSentenceSplitter: def __init__(self, chunk_size=1024, chunk_overlap=20): self.chunk_size = chunk_size self.chunk_overlap = chunk_overlap def get_nodes_from_documents(self, documents, show_progress=False): all_nodes = [] for doc in documents: text = doc.text chunks = [ text[i:i+self.chunk_size] for i in range(0, len(text), self.chunk_size - self.chunk_overlap) ] nodes = [doc.__class__(text=chunk) for chunk in chunks] all_nodes.extend(nodes) return all_nodes ``` 此代码实现了基本的功能,似于 `SentenceSplitter` 的行为[^3]。 #### 4. 异步查询处理 对于涉及异步操作的任务(如多线程检索),可参考提供的异步运行函数模板。这有助于提高程序性能并减少阻塞时间[^4]: ```python import asyncio from tqdm.asyncio import tqdm async def run_queries(queries, retrievers): tasks = [] for query in queries: for retriever in retrievers: tasks.append(retriever.aretrieve(query)) task_results = await tqdm.gather(*tasks) results_dict = {} for idx, (query, result) in enumerate(zip(queries, task_results)): results_dict[(query, idx)] = result return results_dict ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值