汽车加油行驶问题全网最详细(动态规划+画图)

问题描述

给定一个N*N的网络,左上角记为起点S,坐标为(1,1),坐标轴方向及距离标识见图。一辆汽车从起点S出发驶向右下角终点(N,N)。在部分网格交叉点,设置了油库,可供汽车在行驶途中,为其加油。汽车在行驶途中需遵守如下规则:

  • 1.汽车只能沿着网格边行驶,装满油后只能行驶K条网格边。出发时已装满油,起点和终点不设油库
  • 2.当汽车行驶经过一条网格边时,若其X坐标或Y坐标减小,则需付费B,否则免付费用
  • 3.汽车行驶过程中若遇到油库,则需加满油并付油费A
  • 4.在需要时可在网格点增设油库,并付增设油库费用C(不含A)

5.以上N=9,K《3,A,B,C均为正整数,可自行设置数值(值不能相同)

https://i-blog.csdnimg.cn/blog_migrate/708164ff5921b1e88d43d469f119a62b.png ​​图1-1

求行驶到坐标(9,9)的费用最小

本题暂且输入参数 N = 9,K = 3,A = 2,B = 2,C = 1

动态规划原理:

       最优性原理:多阶段决策过程的最优决策序列具有如下性质:无论决策过程的初始状态和初始决策是什么,其余的决策都必须相对于初始决策所产生的当前状态,构成一个最优决策序列。

        图1-2

解题步骤

  1. 找递推表达式
  2. 填写递推表格

分析:

已知起点(1,1),终点(9,9),设(x,y)为当前汽车所到达的点,f是形为(9+1,9+1,2)的三维表(注释:9+1的原因是数组下标以0为起点,本题起点为(1,1)点,为了方便分析,引入占位符,数组下标从1开始计数,本文所有数组都以1为起点,后面不重复申明),path变量为(9+1,9+1,2)的三维表,用于保存行驶进入当前节点的前向节点表,用于路径回溯。

f[x][y][0]表示坐标(1,1)到坐标(x,y)汽车所花的最少费用

f[x][y][1]表示汽车行驶到坐标(x,y)后还能行驶的网格边数

最终总费用:即求f[N][N][0]

并最后通过path表回溯路径—》找到最短路径

 图 1-3

由图1-3可知汽车运动到蓝色的点,有四种运动方式,分别是从上到下,从左到右,从右到左,从下到上,需要找出的是,所花费用最少的点作为当前蓝色点的前向节点。设蓝色节点费用为g,则可得递推表达式

蓝色站点费用 g = 加油费用 或 (建立油站 加上 加油费用)

最小费用 f[x][y][0] = min(f[x-1][y][0]+g, f[x+1][y][0]+g, f[x][y-1][0]+g, f[x][y+1][0])

使用固定随机种子初始地图1-4(红色点表示加油站)

                 图1-4

用递推表达式填表并找规律(熟手可跳过此流程)

                                                        图1-5

import numpy as np
import random
from numpy.core.fromnumeric import reshape
import matplotlib.pyplot as plt

random.seed(10)
INF = 10000

#输入参数
def find_path_and_fee(N = 9, K = 3, A = 2, B = 2, C = 1):    
    seed = lambda : 1 if random.randint(0, 11) % 4 == 0 else 0
    grid = np.zeros((N + 1, N + 1), dtype = int)

    oil_x, oil_y = [], []
    for i in range(N):
        for j in range(N):
            grid[i+1][j+1] = seed()
            if grid[i+1][j+1] == 1:
                oil_x.append(i+1)
                oil_y.append(j+1)

    f = np.zeros((N + 1, N + 1, 2), dtype = int)
    for i in range(1, N+1):
        for j in range(1, N+1):
            f[i][j][0] = INF
            f[i][j][1] = K

    #4个方向
    s = [[-1, 0, 0], [0, -1, 0], [1, 0, B], [0, 1, B]]

    f[1][1][0], f[1][1][1] = 0, K
    tempx, tempy = 0, 0
    path = np.zeros((N + 1, N + 1, 2), dtype= int)
    for x in range(1, N + 1):
        for y in range(1, N + 1):
            if x == 1 and y == 1: continue
            minmoney, minstep, tmpmoney, tmpstep = INF, 0, 0, 0
            
            for i in range(4):
                if x + s[i][0] < 1 or x + s[i][0] > N or y + s[i][1] < 1 or y + s[i][1] > N: continue

                tmpmoney = f[x+s[i][0]][y+s[i][1]][0] + s[i][2]
                tmpstep = f[x+s[i][0]][y+s[i][1]][1] - 1

                if grid[x][y] == 1: 
                    tmpmoney += A
                    tmpstep = K
                if grid[x][y] == 0 and tmpstep == 0 and (x != N or y != N):
                    tmpmoney += A + C
                    tmpstep = K

                if minmoney > tmpmoney:
                    minmoney = tmpmoney
                    minstep = tmpstep
                    tempx = x + s[i][0]
                    tempy = y + s[i][1]
			
            if(f[x][y][0] > minmoney):
                f[x][y][0] = minmoney
                f[x][y][1] = minstep
                path[x][y][0] = tempx
                path[x][y][1] = tempy

    #回溯找到最佳路径
    re_path_x, re_path_y = [], []
    x, y, tmp = N, N, 0
    while ((x != 1) or (y != 1)):
        re_path_x.append(x)
        re_path_y.append(y)
        tmp = x
        x = path[x][y][0]
        y = path[tmp][y][1]
    re_path_x.append(x)
    re_path_y.append(y)

    return N, oil_x, oil_y, re_path_x, re_path_y

#绘制最佳路径图
def draw_pic(N, oil_x, oil_y, re_path_x, re_path_y):
    plt.grid(linestyle=":", color="r")
    ax = plt.gca()                       #获取到当前坐标轴信息
    ax.xaxis.set_ticks_position('top')   #将X坐标轴移到上面
    ax.invert_yaxis()                    #反转Y坐标轴
    plt.xticks([x for x in range(1, N+1)])
    plt.xlabel("x axis")
    plt.yticks([x for x in range(1, N+1)])
    plt.ylabel("y axis")

    plt.scatter(oil_x, oil_y, color="r", label="oil station")    
    plt.plot(re_path_x, re_path_y, ls="-.", lw=2, c="b", label="plot figure")
    plt.legend(loc="lower left")
    plt.show()

N, oil_x, oil_y, re_path_x, re_path_y = find_path_and_fee()
draw_pic(N, oil_x, oil_y, re_path_x, re_path_y)

运行代码

绘制出最佳路径(蓝色虚线为最佳路径,红色点为加油站)

1.问题描述 给定一个N*N 的方形网格,设其左上角为起点,坐标为(1,1),X 轴向右为正,Y 轴 向下为正,每个方格边长为1。一辆汽车从起点出发驶向右下角终点,其坐标为(N,N)。 在若干个网格交叉点处,设置了油库,可供汽车行驶途中加油汽车行驶过程中应遵守 如下规则: (1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在 起点与终点处不设油库。 (2)当汽车行驶经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则 免付费用。 (3)汽车行驶过程中遇油库则应加满油并付加油费用A。 (4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。 (5)(1)(4)中的各数N、K、A、B、C均为正整数。 算法设计: 求汽车从起点出发到达终点的一条所付费用少的行驶路线。 数据输入: 输入数据。第一行是N,K,A,B,C的值,2 <= N <= 100, 2 <= K <= 10。第二行起是一个N*N 的0-1方阵,每行N 个值,至N+1行结束。方阵的第i 行第j 列处的值为1 表示在网格交叉点(i,j)处设置了一个油库,为0 时表示未设油库。 各行相邻的2 个数以空格分隔。 结果输出: 将找到的行驶路线所需的费用,即小费用输出. Sample input 9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 Sample output 12
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值