论文解读(GLA)《Label-invariant Augmentation for Semi-Supervised Graph Classification》

论文提出了一种名为GLA的标签不变增强策略,用于半监督图分类任务。该策略在不生成新图的情况下,通过对原始图的表示进行扰动来实现增强,同时保持标签的一致性。GLA通过图神经网络编码器、分类器、标签不变增强、投影头和目标函数等组件构成,旨在提高模型的泛化能力。实验表明,GLA在多个数据集上表现出优越的性能。
摘要由CSDN通过智能技术生成

🚀 优质资源分享 🚀

学习路线指引(点击解锁) 知识定位 人群定位
🧡 Python实战微信订餐小程序 🧡 进阶级 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。
💛Python量化交易实战💛 入门级 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统

论文信息

论文标题:Label-invariant Augmentation for Semi-Supervised Graph Classification论文作者:Han Yue, Chunhui Zhang, Chuxu Zhang, Hongfu Liu论文来源:2022,NeurIPS论文地址:download论文代码:download

1 Introduction

我们提出了一种图对比学习的标签不变增强策略,该策略涉及到下游任务中的标签来指导对比增强。值得注意的是,我们不生成任何图形数据。相反,我们在训练阶段直接生成标签一致的表示作为增广图。

2 Methodology

2.1 Motivation

数据增强在神经网络训练中起着重要的作用。它不仅提高了学习表示的鲁棒性,而且为训练提供了丰富的数据。

例子:(使用 505050% 的标签做监督信息。数据增强:node dropping, edge perturbation, attribute masking, subgraph sampling)

显然有些数据增强策略(或组合)对于模型训练又负面影响。本文进一步使用 MUTAG 中的 100100100% 标签训练模型,然后以每种数据增强抽样概率 0.20.20.2 选择数据增强图,发现 80% 的数据增强图和原始图标签一致,约 202020% 的数据增强图和原始图标签不一致。

2.2 Label-invariant Augmentation

整体框架:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值