微信公众号:数据挖掘与分析学习
MLlib支持存储在单个机器上的局部向量和矩阵,以及由一个或多个RDD支持的分布式矩阵。局部向量和局部矩阵是用作公共接口的简单数据模型。其底层线性代数运算由Breeze提供。在监督学习中使用的训练示例在MLlib中称为“labeled point”。
1.局部向量(Local Vector)
局部向量具有整数类型和基于0的索引和双精度浮点型,存储在单个机器上。MLlib支持两种类型的局部向量:密集(dense)和稀疏(sparse)。密集向量由表示其条目值的double数组支持,而稀疏向量由两个并行数组支持:索引数组和值数组。例如,矢量(1.0,0.0,3.0)可以以密集格式表示为[1.0,0.0,3.0],或者以稀疏格式表示为(3,[0,2],[1.0,3.0]),其中3是 矢量的大小。
局部向量的基类是Vector,我们提供了两种实现:DenseVector和SparseVector。我们建议使用Vector中实现的工厂方法来创建局部向量。
package com.cb.spark.mllib;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.sql.SparkSession;
public class DataType {
public static void main(String[] args) {
SparkSession session=SparkSession.builder().appName("DataType").master("local").getOrCreate();
//创建一个密集向量
Vector dv=Vectors.dense(1.0,0.0,3.0);
//创建一个稀疏向量,需要指定相关的索引苏数组和值数组
Vector sv=Vectors.sparse(3, new int[]{0,2},new double[]{1.0,3.0});
System.out.println(dv);
System.out.println(sv);
}
}
2.标记点(Labeled point)
标记点(Labeled point)是与标签/响应(response)相关联的密集或稀疏的局部矢量。在MLlib中,标记点用于监督学习算法。我们使用double类型来存储标签,因此我们可以在回归和分类中使用标记点。对于二进制分类,标签应为0(负)或1(正)。 对于多类分类,标签应该是从零开始的类索引:0,1,2,....
标记点由LabeledPoint类表示。
/使用正标签和一个密集特征向量创建一个标记点
LabeledPoint pos=new LabeledPoint(1.0, Vectors.dense(1.0,0.0,3.0));
//使用负标签和一个稀疏特征向量创建一个标记点
LabeledPoint neg=new LabeledPoint(0.0, Vectors.sparse(3, new int[]{0,2},new double[]{1.0,3.0}))
稀疏数据:
在实践中很常见的是稀疏的训练数据。MLlib支持读取以LIBSVM格式存储的训练样例,这是LIBSVM和LIBLINEAR使用的默认格式。它是一种文本格式,其中每一行使用以下格式表示标记的稀疏特征向量:
label index1:value1 index2:value2 ...
其中索引是一个基于升序的。加载后,特征索引将转换为从零开始。
MLUtils.loadLibSVMFile读取以LIBSVM格式存储的训练样例。
RDD<LabeledPoint> rdd = MLUtils.loadLibSVMFile(context.sc(), "./src/main/resources/libsvm_data_test");
3.局部矩阵
局部矩阵具有整数类型的行和列索引以及double类型值,存储在单个机器上。MLlib支持密集矩阵,其条目值以列主要顺序存储在单个double类型数组中;也支持稀疏矩阵,其非零条目值以列主要顺序存储在压缩稀疏列(CSC)格式中。
例如,以下密集矩阵
存储在具有矩阵大小(3,2)的一维数组[1.0,3.0,5.0,2.0,4.0,6.0]中。
Matrix的基类是Matrix,我们提供两种实现:DenseMatrix和SparseMatrix。
我们建议使用Matrices中实现的工厂方法来创建局部矩阵。 请记住,MLlib中的本地矩阵以列主顺序存储。
//创建一个密集矩阵,3行2列
Matrix dm=Matrices.dense(3, 2, new double[]{1.0,3.0,5.0,2.0,4.0,6.0});
System.out.println(dm);
//创建一个稀疏矩阵
Matrix sm=Matrices.sparse(3, 2, new int[]{0,1,3},new int[]{0,2,1},new double[]{9,6,8});
System.out.println(sm);
4.分布式矩阵
分布式矩阵具有long类型的行和列索引以及double类型值,分布式地存储在一个或多个RDD中。选择正确的格式来存储大型和分布式矩阵非常重要。将分布式矩阵转换为不同的格式可能需要全局混洗(shuffle),这需要很大的代价。到目前为止已经实现了四种类型的分布式矩阵。
基本类型称为RowMatrix。RowMatrix是面向行的分布式矩阵,没有有意义的行索引,例如特征向量的集合。它由行(row)的RDD支持,其中每行(row)是本地向量。我们假设RowMatrix的列数不是很大,因此单个本地向量可以合理地传递给驱动程序,也可以使用单个节点进行存储/操作。IndexedRowMatrix类似于RowMatrix但具有行索引,可用于标识行和执行连接。CoordinateMatrix是以坐标列表(COO)格式存储的分布式矩阵,由其条目的RDD支持。BlockMatrix是由MatrixBlock的RDD支持的分布式矩阵,它是(Int,Int,Matrix)的元组。
分布式矩阵的基础RDD必须是确定性的,因为我们缓存矩阵大小。 通常,使用非确定性RDD可能导致错误。
4.1 RowMatrix
RowMatrix是面向行的分布式矩阵,没有有意义的行索引,由其行的RDD支持,其中每行是本地向量。由于每一行都由局部向量表示,因此列数受整数范围的限制,但实际上它应该小得多。
可以从JavaRDD <Vector>实例创建RowMatrix。 然后我们可以计算其列摘要统计信息。
JavaRDD<Vector> rows = context
.parallelize(Arrays.asList(Vectors.dense(1.0, 2.0, 3.0), Vectors.dense(2.0, 5.0, 4.0)));
RowMatrix matrix = new RowMatrix(rows.rdd());
//获取矩阵大小
long m=matrix.numRows(); //2
long n=matrix.numCols(); //3
System.out.println(m+" "+n);
// QR分解
QRDecomposition<RowMatrix, Matrix> result = matrix.tallSkinnyQR(false);
System.out.println(result.Q());
System.out.println(result.R());
4.2IndexedRowMatrix
IndexedRowMatrix类似于RowMatrix但具有有意义的行索引。 它由索引行的RDD支持,因此每行由其索引(long-typed)和本地向量表示。
JavaRDD<IndexedRow> rows = ... // a JavaRDD of indexed rows
// Create an IndexedRowMatrix from a JavaRDD<IndexedRow>.
IndexedRowMatrix mat = new IndexedRowMatrix(rows.rdd());
// Get its size.
long m = mat.numRows();
long n = mat.numCols();
// Drop its row indices.
RowMatrix rowMat = mat.toRowMatrix();
4.3 CoordinateMatrix
CoordinateMatrix是由其条目的RDD支持的分布式矩阵。每个条目都是(i:Long,j:Long,value:Double)的元组,其中i是行索引,j是列索引,value是条目值。只有当矩阵的两个维度都很大且矩阵非常稀疏时,才应使用CoordinateMatrix。
可以从JavaRDD <MatrixEntry>实例创建CoordinateMatrix,其中MatrixEntry是一个包装器(long,long,double)。通过调用toIndexedRowMatrix,可以将CoordinateMatrix转换为具有稀疏行的IndexedRowMatrix。目前不支持CoordinateMatrix的其他计算。
JavaRDD<MatrixEntry> entries = ... // a JavaRDD of matrix entries
// Create a CoordinateMatrix from a JavaRDD<MatrixEntry>.
CoordinateMatrix mat = new CoordinateMatrix(entries.rdd());
// Get its size.
long m = mat.numRows();
long n = mat.numCols();
// Convert it to an IndexRowMatrix whose rows are sparse vectors.
IndexedRowMatrix indexedRowMatrix = mat.toIndexedRowMatrix();
4.4 BlockMatrix
BlockMatrix是由MatrixBlocks的RDD支持的分布式矩阵,其中MatrixBlock是((Int,Int),Matrix)的元组,其中(Int,Int)是块的索引,而Matrix是给定索引处的子矩阵,其大小为rowsPerBlock x colsPerBlock。 BlockMatrix支持添加和乘以另一个BlockMatrix等方法。BlockMatrix还有一个辅助函数validate,可用于检查BlockMatrix是否设置正确。
通过调用toBlockMatrix,可以从IndexedRowMatrix或CoordinateMatrix轻松创建BlockMatrix。toBlockMatrix默认创建大小为1024 x 1024的块。 用户可以通过toBlockMatrix(rowsPerBlock,colsPerBlock)提供值来更改块大小。
JavaRDD<MatrixEntry> entries = ... // a JavaRDD of (i, j, v) Matrix Entries
// Create a CoordinateMatrix from a JavaRDD<MatrixEntry>.
CoordinateMatrix coordMat = new CoordinateMatrix(entries.rdd());
// Transform the CoordinateMatrix to a BlockMatrix
BlockMatrix matA = coordMat.toBlockMatrix().cache();
// Validate whether the BlockMatrix is set up properly. Throws an Exception when it is not valid.
// Nothing happens if it is valid.
matA.validate();
// Calculate A^T A.
BlockMatrix ata = matA.transpose().multiply(matA);