Voc2012数据集 分割 怎么使用 加载标注

本文介绍了如何使用VOC2012数据集进行图像分割,包括如何加载和处理标注文件。VOC2012包含21类标注,其中背景类不计入损失函数。建议使用tar命令解压数据集,读取标注时通过Image.open以P通道读取,并注意处理255值避免影响网络训练。参考了Zhihu上的相关问题解答和ArleyZhang的文章。
摘要由CSDN通过智能技术生成

voc2007 与 voc2017是互斥的图片。这次说2012

解压统统使用tar -xf 使用命令行,会自动给你融合图片。

标注是图片,存储在/..../VOCdevkit/VOC2012/SegmentationClass

标注一共是20类,加上背景21类,白边呢,算是未标注类,不计算到损失函数里,注意下。

读取代码:

import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
#标注地址
vocdir = '/home/DATA/database/VOC2012/ts/'
labdir = 'VOCdevkit/VOC2012/'
task = 'SegmentationClass/'
#数据set地址
list_dir = '/home/DATA/database/VOC2012/ts/VOCdevkit/VOC2012/ImageSets/Segmentation/'
list_name = 'train.txt'
all_the_text = open(list_dir+list_name).read()
train = all_the_text.split('\n')
for ind in train[0:1]:
#按照图片名字读取,实际上读取数据只需要这一句话。
    lab = Image.open(vocdir&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值