关于函数内部是否可以用等价无穷小的问题

关于函数内部是否可以用等价无穷小的问题

作者:小海考研人

例如 :

lim ⁡ x → 0 ln ⁡ ( e x − 1 ) ln ⁡ ( ln ⁡ ( 1 + x ) ) \lim_{x\rightarrow 0} \frac{\ln \left( e^x-1 \right)}{\ln \left( \ln \left( 1+x \right) \right)} x0limln(ln(1+x))ln(ex1)

是否可以用 e x − 1 ∼ x e^x-1\sim x ex1x变为: lim ⁡ x → 0 ln ⁡ x ln ⁡ ( ln ⁡ ( 1 + x ) ) \lim_{x\rightarrow 0} \frac{\ln x}{\ln \left( \ln \left( 1+x \right) \right)} x0limln(ln(1+x))lnx

这里要理解等价其实是做了一步恒等变形:
lim ⁡ x → 0 ln ⁡ ( e x − 1 ) ln ⁡ ( ln ⁡ ( 1 + x ) ) = lim ⁡ x → 0 ln ⁡ ( e x − 1 ) ln ⁡ ( ln ⁡ ( 1 + x ) ) × ln ⁡ x ln ⁡ x = lim ⁡ x → 0 ln ⁡ x ln ⁡ ( ln ⁡ ( 1 + x ) ) × lim ⁡ x → 0 ln ⁡ ( e x − 1 ) ln ⁡ x \begin{array}{l} \lim_{x\rightarrow 0} \frac{\ln \left( e^x-1 \right)}{\ln \left( \ln \left( 1+x \right) \right)}=\lim_{x\rightarrow 0} \frac{\ln \left( e^x-1 \right)}{\ln \left( \ln \left( 1+x \right) \right)}\times \frac{\ln x}{\ln x}\\ =\lim_{x\rightarrow 0} \frac{\ln x}{\ln \left( \ln \left( 1+x \right) \right)}\times \lim_{x\rightarrow 0} \frac{\ln \left( e^x-1 \right)}{\ln x}\\ \end{array} limx0ln(ln(1+x))ln(ex1)=limx0ln(ln(1+x))ln(ex1)×lnxlnx=limx0ln(ln(1+x))lnx×limx0lnxln(ex1)
这里的关键是 lim ⁡ x → 0 ln ⁡ ( e x − 1 ) ln ⁡ x \lim_{x\rightarrow 0} \frac{\ln \left( e^x-1 \right)}{\ln x} x0limlnxln(ex1)
极限是否存在,否则不可拆,且极限值应为1,否则无法省略。所以原问题转化为若 lim ⁡ x → 0 ln ⁡ ( e x − 1 ) ln ⁡ x \lim_{x\rightarrow 0} \frac{\ln \left( e^x-1 \right)}{\ln x} limx0lnxln(ex1) 极限值恒为1,则可用等价无穷小。显然对于这题是成立的(使用洛必达计算)。

那么是否所有的情况都成立呢,答案是否定的。例如 lim ⁡ x → + ∞ e x ( 1 + 1 x ) x 2 \lim_{x\rightarrow +\infty} \frac{e^x}{\left( 1+\frac{1}{x} \right) ^{x^2}} limx+(1+x1)x2ex ,在计算的过程中,
lim ⁡ x → + ∞ e x ( 1 + 1 x ) x 2 = lim ⁡ x → + ∞ e x e x 2 ln ⁡ ( 1 + 1 x ) \lim_{x\rightarrow +\infty} \frac{e^x}{\left( 1+\frac{1}{x} \right) ^{x^2}}=\lim_{x\rightarrow +\infty} \frac{e^x}{e^{x^2\ln \left( 1+\frac{1}{x} \right)}} x+lim(1+x1)x2ex=x+limex2ln(1+x1)ex
分母如果使用等价,则会算出错误的答案,其原因是违反了极限的趋向同时性,人为制造先后顺序。

总而言之,读者应记住下面的原则:

① 若 l i m A , l i m B limA,limB limA,limB 均存在,则可写成 lim ⁡ ( A ⋅ B ) = lim ⁡ A ⋅ lim ⁡ B \lim \left( A\cdot B \right) =\lim A\cdot \lim B lim(AB)=limAlimB,其中 l i m A , l i m B limA,limB limA,limB 可分别算之,无所谓先后;

② 否则, lim ⁡ ( A ⋅ B ) = 不能写成 lim ⁡ A ⋅ lim ⁡ B \lim \left( A\cdot B \right) \overset{\text{不能写成}}{=}\lim A\cdot \lim B lim(AB)=不能写成limAlimB 。这里,要么 lim ⁡ ( A ⋅ B ) \lim \left( A\cdot B \right) lim(AB) 整体运算,如 lim ⁡ n → 0 x sin ⁡ 1 x = 0 \lim_{n\rightarrow 0} x\sin \frac{1}{x}=0 limn0xsinx1=0 (无穷小量乘以有界变量是无穷小量);要么 A ⋅ B A\cdot B AB 的极限不存在,如 lim ⁡ x → 0 1 x sin ⁡ 1 x \lim_{x\rightarrow 0} \frac{1}{x}\sin \frac{1}{x} limx0x1sinx1 不存在。

  • 8
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值