关于秩为1矩阵的重要结论
作者:小海考研人
在考研数学线性代数中,秩为1的矩阵具有特殊意义,往年常考察其相关知识点。
其一是秩为 1 矩阵的特征值,特征值的计算是一个基本考点,其计算方法很多,包括:根据特征值的定义进行计算、由特征方程计算、利用特征值的各种性质进行计算,这些方法都是求特征值的基本方法,同学们需要熟练掌握,但这些方法只是针对一般矩阵的普遍方法,而对于一些特殊矩阵,有时采用一些特殊的方法或技巧则可以更灵活、更有效地解决问题。下文将对秩为1的特殊矩阵的特征值的计算方法做些分析,并提供典型例题供大家参考。
其二是秩为1矩阵是否能相似对角化,知道结论可以秒出结果。
其三是将秩为1矩阵拆为两列向量的乘积,在很多大题中常会用到。
秩为1 的矩阵的特征值分析
若
n
n
n 阶矩阵
A
=
(
a
i
i
)
A=\left( a_{ii} \right)
A=(aii) 的秩为 1,则
A
A
A 的特征值为
λ
1
=
λ
2
=
⋯
λ
n
−
1
=
0
\lambda _1=\lambda _2=\cdots \lambda _{n-1}=0
λ1=λ2=⋯λn−1=0
当
∑
i
=
1
n
a
i
i
≠
0
\sum_{i=1}^n{a_{ii}}\ne 0
∑i=1naii=0 时,0为
A
A
A 的
n
−
1
n-1
n−1 重特征值;当
∑
i
=
1
n
a
i
i
=
0
\sum_{i=1}^n{a_{ii}}=0
∑i=1naii=0 时,0为
A
A
A 的
n
n
n 重特征值。这个结论可以用不同的方法证明(需要重点掌握)
证:法1(方程组法)
若 R ( A ) = 1 R(A)=1 R(A)=1 ,则 A x = 0 Ax=0 Ax=0 的基础解系含 n − 1 n-1 n−1 个线性无关解向量,由于 A x = 0 = 0 ⋅ x Ax=0=0 \cdot x Ax=0=0⋅x,所以这 n − 1 n-1 n−1 个线性无关的解向量都是属于特征值0的特征向量,因此0至少是 A A A 的 n − 1 n-1 n−1 重特征值。
设 λ 1 = λ 2 = ⋯ λ n − 1 = 0 \lambda _1=\lambda _2=\cdots \lambda _{n-1}=0 λ1=λ2=⋯λn−1=0,则由特征值的性质 λ 1 + λ 2 + ⋯ λ n − 1 + λ n = ∑ i = 1 n a i i \lambda _1+\lambda _2+\cdots \lambda _{n-1}+\lambda _n=\sum_{i=1}^n{a_{ii}} λ1+λ2+⋯λn−1+λn=∑i=1naii 得: λ n = ∑ i = 1 n a i i \lambda _n=\sum_{i=1}^n{a_{ii}} λn=∑i=1naii 。由此可知:
当 ∑ i = 1 n a i i ≠ 0 \sum_{i=1}^n{a_{ii}}\ne 0 ∑i=1naii=0 时,0为 A A A 的 n − 1 n-1 n−1 重特征值;当 ∑ i = 1 n a i i = 0 \sum_{i=1}^n{a_{ii}}=0 ∑i=1naii=0 时,0为 A A A 的 n n n 重特征值.
法2(特征方程法)
若 R ( A ) = 1 R(A)=1 R(A)=1 ,则 A A A 的列向量组的秩为 1,不妨设 A A A 的第一列为 α = ( a 1 , a 2 , ⋯ , a n ) T ≠ 0 ( a 1 ≠ 0 ) \alpha=\left(a_{1}, a_{2}, \cdots, a_{n}\right)^{T} \neq 0 \quad\left(a_{1} \neq 0\right) α=(a1,a2,⋯,an)T=0(a1=0),则其它列均可由 α \alpha α 线性表示,于是 A A A 可表示为:
A = ( b 1 α , b 2 α , ⋯ , b n α ) = α β T A=\left(b_{1} \alpha, b_{2} \alpha, \cdots, b_{n} \alpha\right)=\alpha \beta^{T} A=(b1α,b2α,⋯,bnα)=αβT,其中 b 1 = 1 , β = ( b 1 , b 2 , ⋯ , b n ) T b_{1}=1, \quad \beta=\left(b_{1}, b_{2}, \cdots, b_{n}\right)^{T} b1=1,β=(b1,b2,⋯,bn)T
∣ λ E − A ∣ = ∣ λ − a 1 b 1 − a 1 b 2 ⋯ − a 1 b n − a 2 b 1 λ − a 2 b 2 ⋯ − a 2 b n ⋮ ⋮ ⋮ − a n b 1 − a n b 2 ⋯ λ − a n b n ∣ |\lambda E-A|=\left|\begin{array}{cccc}\lambda-a_{1} b_{1} & -a_{1} b_{2} & \cdots & -a_{1} b_{n} \\ -a_{2} b_{1} & \lambda-a_{2} b_{2} & \cdots & -a_{2} b_{n} \\ \vdots & \vdots & & \vdots \\ -a_{n} b_{1} & -a_{n} b_{2} & \cdots & \lambda-a_{n} b_{n}\end{array}\right| ∣λE−A∣=∣∣∣∣∣∣∣∣∣λ−a1b1−a2b1⋮−anb1−a1b2λ−a2b2⋮−anb2⋯⋯⋯−a1bn−a2bn⋮λ−anbn∣∣∣∣∣∣∣∣∣
= ∣ λ − a 1 b 1 − a 1 b 2 ⋯ − a 1 b n − a 2 a 1 λ λ ⋯ 0 ⋮ ⋮ ⋮ − a n a 1 λ 0 ⋯ λ ∣ =\left|\begin{array}{cccc} \lambda-a_{1} b_{1} & -a_{1} b_{2} & \cdots & -a_{1} b_{n} \\ -\frac{a_{2}}{a_{1}} \lambda & \lambda & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -\frac{a_{n}}{a_{1}} \lambda & 0 & \cdots & \lambda \end{array}\right| =∣∣∣∣∣∣∣∣∣λ−a1b1−a1a2λ⋮−a1anλ−a1b2λ⋮0⋯⋯⋯−a1bn0⋮λ∣∣∣∣∣∣∣∣∣
= λ − ∑ i = 1 n a i b i − a 1 b 2 ⋯ − a 1 b n 0 λ ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ =\begin{array}{|cccc|} \lambda-\sum_{i=1}^{n} a_{i} b_{i} & -a_{1} b_{2} & \cdots & -a_{1} b_{n} \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda \end{array} =λ−∑i=1naibi0⋮0−a1b2λ⋮0⋯⋯⋯−a1bn0⋮λ
= λ n − 1 ( λ − ∑ i = 1 n a i b i ) =\lambda^{n-1}\left(\lambda-\sum_{i=1}^{n} a_{i} b_{i}\right) =λn−1(λ−i=1∑naibi)
故: λ 1 = λ 2 = ⋯ = λ n − 1 = 0 , λ n = ∑ i = 1 n a i b i \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=0, \lambda_{n}=\sum_{i=1}^{n} a_{i} b_{i} λ1=λ2=⋯=λn−1=0,λn=∑i=1naibi
由于 A = ( a i b j ) = ( a i i ) , A=\left(a_{i} b_{j}\right)=\left(a_{i i}\right), A=(aibj)=(aii), 所以 a i i = a i b i , a_{i i}=a_{i} b_{i}, aii=aibi, 故 λ n = ∑ i = 1 n a i b i = ∑ i = 1 n a i i \lambda_{n}=\sum_{i=1}^{n} a_{i} b_{i}=\sum_{i=1}^{n} a_{i i} λn=∑i=1naibi=∑i=1naii
由此可知 , , , 当 ∑ i = 1 n a i i ≠ 0 \sum_{i=1}^{n} a_{i i} \neq 0 ∑i=1naii=0时, 0 为 A A A 的 n − 1 n-1 n−1 重特征值 ; ; ; 当 ∑ i = 1 n a i i = 0 \sum_{i=1}^{n} a_{i i}=0 ∑i=1naii=0 时 , 0 , 0 ,0 为 A A A 的 n n n 重特征值。
秩为1矩阵的其他重要结论
若 A n × n , A_{n \times n}, An×n, 且 r ( A ) = 1 r(A)=1 r(A)=1
- 矩阵 A A A 都可以拆成两向量乘积,即 A = α β T A=\alpha \beta^{T} A=αβT,其中 α \alpha α 和 β \beta β 为非零列向量
- A n = α β T α β T ⋯ α β T = ( β T α ) n − 1 ⋅ A , A^{n}=\alpha \beta^{T} \alpha \beta^{T} \cdots \alpha \beta^{T}=\left(\beta^{T} \alpha\right)^{n-1} \cdot A, An=αβTαβT⋯αβT=(βTα)n−1⋅A, 令人惊喜的是 β T α = tr ( A ) = ∑ i = 1 n a n \beta^{T} \alpha=\operatorname{tr}(A)=\sum_{i=1}^{n} a_{n} βTα=tr(A)=∑i=1nan
- 若 tr ( A ) = ∑ i = 1 n a n ≠ 0 , \operatorname{tr}(A)=\sum_{i=1}^{n} a_{n} \neq 0, tr(A)=∑i=1nan=0, 则矩阵 A A A 可相似对角化,否则不可相似对角化。