考研数学:秩为1的矩阵的特征值分析

本文聚焦考研数学线性代数中秩为1的矩阵。介绍了秩为1矩阵特征值的计算方法,包括根据定义、特征方程及性质计算,还给出特殊矩阵特征值的计算分析与例题。此外,阐述了秩为1矩阵能否相似对角化的结论,以及将其拆为两列向量乘积的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于秩为1矩阵的重要结论

作者:小海考研人

在考研数学线性代数中,秩为1的矩阵具有特殊意义,往年常考察其相关知识点。

其一是秩为 1 矩阵的特征值,特征值的计算是一个基本考点,其计算方法很多,包括:根据特征值的定义进行计算、由特征方程计算、利用特征值的各种性质进行计算,这些方法都是求特征值的基本方法,同学们需要熟练掌握,但这些方法只是针对一般矩阵的普遍方法,而对于一些特殊矩阵,有时采用一些特殊的方法或技巧则可以更灵活、更有效地解决问题。下文将对秩为1的特殊矩阵的特征值的计算方法做些分析,并提供典型例题供大家参考。

其二是秩为1矩阵是否能相似对角化,知道结论可以秒出结果。

其三是将秩为1矩阵拆为两列向量的乘积,在很多大题中常会用到。

秩为1 的矩阵的特征值分析

n n n 阶矩阵 A = ( a i i ) A=\left( a_{ii} \right) A=(aii) 的秩为 1,则 A A A 的特征值为
λ 1 = λ 2 = ⋯ λ n − 1 = 0 \lambda _1=\lambda _2=\cdots \lambda _{n-1}=0 λ1=λ2=λn1=0
∑ i = 1 n a i i ≠ 0 \sum_{i=1}^n{a_{ii}}\ne 0 i=1naii=0 时,0为 A A A n − 1 n-1 n1 重特征值;当 ∑ i = 1 n a i i = 0 \sum_{i=1}^n{a_{ii}}=0 i=1naii=0 时,0为 A A A n n n 重特征值。这个结论可以用不同的方法证明(需要重点掌握)

证:法1(方程组法)

R ( A ) = 1 R(A)=1 R(A)=1 ,则 A x = 0 Ax=0 Ax=0 的基础解系含 n − 1 n-1 n1 个线性无关解向量,由于 A x = 0 = 0 ⋅ x Ax=0=0 \cdot x Ax=0=0x,所以这 n − 1 n-1 n1 个线性无关的解向量都是属于特征值0的特征向量,因此0至少是 A A A n − 1 n-1 n1 重特征值。

λ 1 = λ 2 = ⋯ λ n − 1 = 0 \lambda _1=\lambda _2=\cdots \lambda _{n-1}=0 λ1=λ2=λn1=0,则由特征值的性质 λ 1 + λ 2 + ⋯ λ n − 1 + λ n = ∑ i = 1 n a i i \lambda _1+\lambda _2+\cdots \lambda _{n-1}+\lambda _n=\sum_{i=1}^n{a_{ii}} λ1+λ2+λn1+λn=i=1naii 得: λ n = ∑ i = 1 n a i i \lambda _n=\sum_{i=1}^n{a_{ii}} λn=i=1naii 。由此可知:

∑ i = 1 n a i i ≠ 0 \sum_{i=1}^n{a_{ii}}\ne 0 i=1naii=0 时,0为 A A A n − 1 n-1 n1 重特征值;当 ∑ i = 1 n a i i = 0 \sum_{i=1}^n{a_{ii}}=0 i=1naii=0 时,0为 A A A n n n 重特征值.

法2(特征方程法)

R ( A ) = 1 R(A)=1 R(A)=1 ,则 A A A 的列向量组的秩为 1,不妨设 A A A 的第一列为 α = ( a 1 , a 2 , ⋯   , a n ) T ≠ 0 ( a 1 ≠ 0 ) \alpha=\left(a_{1}, a_{2}, \cdots, a_{n}\right)^{T} \neq 0 \quad\left(a_{1} \neq 0\right) α=(a1,a2,,an)T=0(a1=0),则其它列均可由 α \alpha α 线性表示,于是 A A A 可表示为:

A = ( b 1 α , b 2 α , ⋯   , b n α ) = α β T A=\left(b_{1} \alpha, b_{2} \alpha, \cdots, b_{n} \alpha\right)=\alpha \beta^{T} A=(b1α,b2α,,bnα)=αβT,其中 b 1 = 1 , β = ( b 1 , b 2 , ⋯   , b n ) T b_{1}=1, \quad \beta=\left(b_{1}, b_{2}, \cdots, b_{n}\right)^{T} b1=1,β=(b1,b2,,bn)T

∣ λ E − A ∣ = ∣ λ − a 1 b 1 − a 1 b 2 ⋯ − a 1 b n − a 2 b 1 λ − a 2 b 2 ⋯ − a 2 b n ⋮ ⋮ ⋮ − a n b 1 − a n b 2 ⋯ λ − a n b n ∣ |\lambda E-A|=\left|\begin{array}{cccc}\lambda-a_{1} b_{1} & -a_{1} b_{2} & \cdots & -a_{1} b_{n} \\ -a_{2} b_{1} & \lambda-a_{2} b_{2} & \cdots & -a_{2} b_{n} \\ \vdots & \vdots & & \vdots \\ -a_{n} b_{1} & -a_{n} b_{2} & \cdots & \lambda-a_{n} b_{n}\end{array}\right| λEA=λa1b1a2b1anb1a1b2λa2b2anb2a1bna2bnλanbn

= ∣ λ − a 1 b 1 − a 1 b 2 ⋯ − a 1 b n − a 2 a 1 λ λ ⋯ 0 ⋮ ⋮ ⋮ − a n a 1 λ 0 ⋯ λ ∣ =\left|\begin{array}{cccc} \lambda-a_{1} b_{1} & -a_{1} b_{2} & \cdots & -a_{1} b_{n} \\ -\frac{a_{2}}{a_{1}} \lambda & \lambda & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -\frac{a_{n}}{a_{1}} \lambda & 0 & \cdots & \lambda \end{array}\right| =λa1b1a1a2λa1anλa1b2λ0a1bn0λ

= λ − ∑ i = 1 n a i b i − a 1 b 2 ⋯ − a 1 b n 0 λ ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ =\begin{array}{|cccc|} \lambda-\sum_{i=1}^{n} a_{i} b_{i} & -a_{1} b_{2} & \cdots & -a_{1} b_{n} \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda \end{array} =λi=1naibi00a1b2λ0a1bn0λ

= λ n − 1 ( λ − ∑ i = 1 n a i b i ) =\lambda^{n-1}\left(\lambda-\sum_{i=1}^{n} a_{i} b_{i}\right) =λn1(λi=1naibi)

故: λ 1 = λ 2 = ⋯ = λ n − 1 = 0 , λ n = ∑ i = 1 n a i b i \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=0, \lambda_{n}=\sum_{i=1}^{n} a_{i} b_{i} λ1=λ2==λn1=0,λn=i=1naibi

由于 A = ( a i b j ) = ( a i i ) , A=\left(a_{i} b_{j}\right)=\left(a_{i i}\right), A=(aibj)=(aii), 所以 a i i = a i b i , a_{i i}=a_{i} b_{i}, aii=aibi, λ n = ∑ i = 1 n a i b i = ∑ i = 1 n a i i \lambda_{n}=\sum_{i=1}^{n} a_{i} b_{i}=\sum_{i=1}^{n} a_{i i} λn=i=1naibi=i=1naii

由此可知 , , , ∑ i = 1 n a i i ≠ 0 \sum_{i=1}^{n} a_{i i} \neq 0 i=1naii=0时, 0 为 A A A n − 1 n-1 n1 重特征值 ; ; ; ∑ i = 1 n a i i = 0 \sum_{i=1}^{n} a_{i i}=0 i=1naii=0 , 0 , 0 ,0 A A A n n n 重特征值。

秩为1矩阵的其他重要结论

A n × n , A_{n \times n}, An×n, r ( A ) = 1 r(A)=1 r(A)=1

  • 矩阵 A A A 都可以拆成两向量乘积,即 A = α β T A=\alpha \beta^{T} A=αβT,其中 α \alpha α β \beta β 为非零列向量
  • A n = α β T α β T ⋯ α β T = ( β T α ) n − 1 ⋅ A , A^{n}=\alpha \beta^{T} \alpha \beta^{T} \cdots \alpha \beta^{T}=\left(\beta^{T} \alpha\right)^{n-1} \cdot A, An=αβTαβTαβT=(βTα)n1A, 令人惊喜的是 β T α = tr ⁡ ( A ) = ∑ i = 1 n a n \beta^{T} \alpha=\operatorname{tr}(A)=\sum_{i=1}^{n} a_{n} βTα=tr(A)=i=1nan
  • tr ⁡ ( A ) = ∑ i = 1 n a n ≠ 0 , \operatorname{tr}(A)=\sum_{i=1}^{n} a_{n} \neq 0, tr(A)=i=1nan=0, 则矩阵 A A A 可相似对角化,否则不可相似对角化。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值